pytorch/torch/csrc/jit/graph_executor.h
Michael Suo 711be82951 Make optimize a thread_local flag
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23170

Test Plan: Imported from OSS

Differential Revision: D16441912

Pulled By: suo

fbshipit-source-id: a33485178a329d54e41e364c4f14950f88481c55
2019-07-24 23:09:21 -07:00

79 lines
2.3 KiB
C++

#pragma once
#include <torch/csrc/jit/argument_spec.h>
#include <torch/csrc/jit/interpreter.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/variable_tensor_list.h>
#include <memory>
namespace torch {
namespace jit {
struct GraphExecutorState;
struct Code;
struct ExecutionPlan {
ExecutionPlan() = default;
ExecutionPlan(std::shared_ptr<Graph> graph)
: code(graph), graph(std::move(graph)) {}
operator bool() const {
return static_cast<bool>(graph);
}
Code code;
std::shared_ptr<Graph> graph;
};
// Notice that those structs don't manage lifetime of their members.
// They is only valid only right after you call getDebugState() and should never
// be used again once another GraphExecutor function is called.
struct GraphExecutorState {
const Graph* graph = nullptr;
ExecutionPlan fallback; // XXX: members of this field are optional
std::unordered_map<ArgumentSpec, ExecutionPlan> execution_plans;
};
struct GraphExecutorImplBase;
struct TORCH_API GraphExecutor {
GraphExecutor() = default;
GraphExecutor(std::shared_ptr<Graph> graph);
void run(Stack& inputs);
ExecutionPlan getPlanFor(Stack& inputs);
explicit operator bool() const {
return pImpl != nullptr;
}
std::shared_ptr<Graph> graph() const;
GraphExecutorState getDebugState();
private:
std::shared_ptr<GraphExecutorImplBase> pImpl;
};
// These passes need to run before it is valid to pass to the interpreter
// regardless of whether sizes have been specialized or not.
TORCH_API void runRequiredPasses(const std::shared_ptr<Graph>& g);
TORCH_API void debugSetAutodiffSubgraphInlining(bool state);
TORCH_API std::shared_ptr<Graph> lastExecutedOptimizedGraph();
TORCH_API bool& getProfilingMode();
TORCH_API void setGraphExecutorOptimize(bool o);
TORCH_API bool getGraphExecutorOptimize();
namespace detail {
GraphExecutor* getGradExecutor(Operation& op);
// for debugging information we expose a way to get the last actually
// run graph. Previous approaches allowed querying the GraphExecutor
// for what graph it would run in certain circumstances (graphFor), but
// this is fragile because we sometimes change how these decisions are made.
// This interface still allows our tests to look at optimized graphs, but
// with less plumbing.
} // namespace detail
} // namespace jit
} // namespace torch