Commit Graph

25 Commits

Author SHA1 Message Date
Michael Suo
711be82951 Make optimize a thread_local flag
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23170

Test Plan: Imported from OSS

Differential Revision: D16441912

Pulled By: suo

fbshipit-source-id: a33485178a329d54e41e364c4f14950f88481c55
2019-07-24 23:09:21 -07:00
Zachary DeVito
ea822d9626 Interpreter support for CallFunction/CallMethod (#21562)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21562
ghimport-source-id: 17e5e183f730f50d97ef48973aafc6249d54978f

Reviewed By: suo

Differential Revision: D15729500

Pulled By: zdevito

fbshipit-source-id: efa8a133b617b1498810392a8da6b513ce00b5eb
2019-06-09 15:28:26 -07:00
Zachary DeVito
ad0c08f950 Expose ExecutionPlan in prep for function calls (#21561)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21561
ghimport-source-id: 4bf28d8140610a0cefef0c0a17f0a513ae855dde

Reviewed By: suo

Differential Revision: D15729498

Pulled By: zdevito

fbshipit-source-id: b26458336da1efaba71d8a577c3917c6622dae0d
2019-06-09 15:28:22 -07:00
Zachary DeVito
e616a5e8b8 Revert D15600067: Expose ExecutionPlan in prep for function calls
Differential Revision:
D15600067

Original commit changeset: 82b7de458dd6

fbshipit-source-id: ca26a362cd73bdb9e8c4eba15dd5c10986fa79fe
2019-06-07 22:20:44 -07:00
Zachary DeVito
bfb235b8c9 Revert D15618275: Interpreter support for CallFunction/CallMethod
Differential Revision:
D15618275

Original commit changeset: 038ae27e5416

fbshipit-source-id: 8dbe0f564ba103fe445dacc471085c659171705f
2019-06-07 22:20:40 -07:00
Zachary DeVito
5f6afafdef Interpreter support for CallFunction/CallMethod (#21325)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21325
ghimport-source-id: eeca1176f5e00c85a69cd016acccf5105e670e02

Reviewed By: jamesr66a

Differential Revision: D15618275

Pulled By: zdevito

fbshipit-source-id: 038ae27e5416f1ce338009627c839a4d61a00658
2019-06-07 20:56:58 -07:00
Zachary DeVito
1517ff66a1 Expose ExecutionPlan in prep for function calls (#21273)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21273
ghimport-source-id: b92c1e07fbe4122467a21b98d29635295093e0c2

Reviewed By: jamesr66a

Differential Revision: D15600067

Pulled By: zdevito

fbshipit-source-id: 82b7de458dd65c175f55b0f383bfc3fcf4704032
2019-06-07 20:56:55 -07:00
Nikolay Korovaiko
9499c7b7ee Profiling GraphExecutor
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19994

Differential Revision: D15307752

Pulled By: Krovatkin

fbshipit-source-id: 7b35191042199ef16823487e15fe639968cbdc89
2019-05-10 23:05:47 -07:00
Mikhail Zolotukhin
8b46938355 Cleanup includes in torch/csrc/jit/* (#19922)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19922
ghimport-source-id: 0434c46bf75621ff79ea27a18a2475e7f13e2487

Differential Revision: D15125015

Pulled By: ZolotukhinM

fbshipit-source-id: 5685edfc94067f62e363a85e9badb7f757b1d321
2019-05-06 13:40:26 -07:00
Zachary DeVito
b9c20d5224 graph_for based on last_optimized_executed_graph (#19142)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19142
ghimport-source-id: 822013fb7e93032c74867fc77c6774c680aef6d1

Differential Revision: D14888703

Pulled By: zdevito

fbshipit-source-id: a2ad65a042d08b1adef965c2cceef37bb5d26ba9
2019-04-16 09:17:53 -07:00
Zachary DeVito
1827ca4c35 Make debug subgraph inlining thread local (#19136)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19136
ghimport-source-id: 3a24ab36aa753ce5cce7bba3467bdbe88e5c7f60

Reviewed By: jamesr66a

Differential Revision: D14885051

Pulled By: zdevito

fbshipit-source-id: b39c6ceef73ad9caefcbf8f40dd1b9132bba03c2
2019-04-13 08:42:14 -07:00
Michael Suo
f636dc9276 clang format world (#15524)
Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.

Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524

Differential Revision: D13547989

Pulled By: suo

fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
2018-12-26 06:55:01 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Peter Goldsborough
6071389a90 Enable cppcoreguidelines checks in clang-tidy (#12959)
Summary:
Enables most of `cppcoreguidelines-*` checks for clang-tidy. Major fixes included:

- Uninitialized members,
- Use of `const_cast`,
- Use of raw `new`

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12959

Differential Revision: D11349285

Pulled By: goldsborough

fbshipit-source-id: 9e24d643787dfe7ede69f96223c8c0179bd1b2d6
2018-10-29 18:23:35 -07:00
Richard Zou
c8a0b11b7f add autodiff expressions for common operations (#11832)
Summary:
This PR does a few things:

Previously test_jit.py only tested autograd on backward graphs.
This is because we borrow from test_autograd and construct graphs with a small
number of nodes. Because the number of nodes is small (typically 1-2), those graph
do not end up containing autodiff subgraphs, so autodiff never gets tested.

This PR enables autodiff testing by doing the following:
- added disableDebugAutodiffSubgraphInlining fn to graph_executor to disable
  autodiff subgraph inlining.
- (implementation) added autodiffSubgraphNodeThreshold and autodiffSubgraphInlineThreshold.
  These are set to their default values (2, 5) but disableDebugAutodiffSubgraphInlining()
  sets both to 1, disabling subgraph inlining and allowing 1-node autodiff subgraphs.
- The relevant backward jit tests disable autodiff subgraph inlining so they
  will test the autodiff versions of the operators instead of autograd whenever
  an autodiff variant exists.
- We don't run the tests that do inline autodiff subgraphs anymore.
  This has no impact on testing correctness because the assumption is
  that autograd functions are correct and are tested in test_autograd.py

This allows the graph fuser to work better because a lot of these ops were previously not autodiff-compatible but fusible. On a more concrete example, lstm backward contains a lot of tensor-scalar operations; these autodiff formulas help its double backward pass.

Included:
- arithmetic overloads
- abs, acos, asin, atan, ceil, cos, cosh, exp, expm1, floor, fmod, frac, log, log10, log1p, log2 reciprocal, remainder, round, sin, sinh, tan, trunc, rsqrt

TestJitGenerated tests autodiff for all of the added operations.

cc apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11832

Differential Revision: D10031256

Pulled By: zou3519

fbshipit-source-id: 9daf9900a5ad187743609cd0fbbd10b15411ad93
2018-09-26 08:10:04 -07:00
Adam Paszke
00df09b65d Change specialization rules in GraphExecutors (#10977)
Summary:
**Review last commit only.** Stacked on top of #10949.

This commit fixes a number of issues connected to caching
differentiability status of graphs inside graph executors,
and changes the rules for optimization of differentiable subgraphs.
Previously every one of those was instantiated as a separate graph
executor, but now they are simply heavier-optimized graph regions,
and graph executors are only instantiated for their backward.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10977

Differential Revision: D9600626

Pulled By: apaszke

fbshipit-source-id: dad09a0f586e396afbd5406319c1cd54fbb8a3d3
2018-08-30 22:11:01 -07:00
Peter Goldsborough
04939a4745 Match parameter names and = default (#9737)
Summary:
More clang tidy cleanups in `torch/csrc`. This time:

1. `hicpp-use-equals-default` recommends `= default` instead of `{}` for constructors/destructors. This is better practice because it expresses the intent better (https://stackoverflow.com/questions/6502828/what-does-default-mean-after-a-class-function-declaration)
2. `readability-inconsistent-declaration-parameter-name` enforces that parameter names in the declaration match parameter names in the definition. This is just generally useful and can prevent confusion and bugs.

Also updated my script a little bit.

apaszke ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9737

Differential Revision: D9069069

Pulled By: goldsborough

fbshipit-source-id: f7b3f3a4eb4c9fadc30425a153566d3b613a41ae
2018-07-30 14:10:00 -07:00
Adam Paszke
e39c8043dc Make GraphExecutors work on Stacks instead of variable_tensor_lists (#9763)
Summary:
This is blocking the IR operator unification, because I need to be able to pass scalars to backward functions.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9763

Reviewed By: zou3519

Differential Revision: D8978457

Pulled By: apaszke

fbshipit-source-id: 570b4c3409322459cb0f2592069730a7d586ab20
2018-07-26 12:00:27 -07:00
peter
53083b8353 Remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS and fix CUDA 8 build on Windows (#9491) (#9491)
Summary:
Fixes #9092.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9491
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9693

Differential Revision: D8946850

Pulled By: ezyang

fbshipit-source-id: bd816f459ab70f6b4a0983305a1ce341bb633707
2018-07-23 06:40:39 -07:00
Peter Goldsborough
18a975210d Add explicit to conversions (#9336)
Summary:
Another code-mod for clang-tidy: Conversion operators should be marked explicit so that they don't cause unwanted implicit conversions. This is especially important for `operator bool()`, see https://stackoverflow.com/questions/39995573/when-can-i-use-explicit-operator-bool-without-a-cast

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9336

Reviewed By: apaszke

Differential Revision: D8807065

Pulled By: goldsborough

fbshipit-source-id: 0e9f4ebd0048a2a510c0d05fa410695d7e977eb1
2018-07-11 12:10:30 -07:00
Zachary DeVito
f74207c99f
Allow autograd to work even when the shape of values cannot be determined (#8641)
This commit implements the solution proposed in https://github.com/pytorch/pytorch/issues/8410
to workaround the need to create zero tensors with the same shape as inputs.
It introduces the concept of a LinearBlock which marks places in the code
where we know if all the inputs to the node are zero, then the outputs
to the node are also zero. Autodiff introduces LinearBlocks around
backwards functions, which have this property. specializeUndef then
propagates Undef nodes using this information.

Notes:
* Since we do not always specialize, we have a pass LowerLinearBlocks
that replaces the block with an if statement that dynamically guards
the Undef case.
* We introduce AutogradAdd which is addition that still works when
its inputs might be undefined. In cases where we specialize this will
get removed in favor of a normal add, but there are cases where
gradient graphs do not specialize (e.g. when they are not differentiable,
but a derivative is required) so it is important for this op to be executable.
2018-06-25 18:40:04 -07:00
Adam Paszke
9232afeffa
Add code for TensorBoard visualization of JIT GraphExecutors (#8050) 2018-06-02 20:55:25 +02:00
Adam Paszke
b45f2ff1ae
Remove CompiledFunction + clean up JIT tests (#7421) 2018-05-16 20:03:04 +02:00
Zachary DeVito
8995ddda05
[jit][script] Check that each builtin returns the right number of values. (#6492)
* Fixes to the way script handles multiple values, and other minor fixes.

This commit improves our handling of operators that return multiple values.
Builtins are now checked so that they return the right number of values,
and support for TupleValue is extended to all things that can return
multiple values.

This resolves issues where the compiler accepted things like:

  a, b = c + c

This would cause the interpreter to crash. Now each operator knows
how many results it will produce and can check it against the number
of requested inputs.

Notes:
* Allow True/False literals in constant expressions
* make handling of keyword constants more consistent to support True/False
* make parsing constants match the way we construct constants from python
* improve the error messages when accessing bad graph attributes.
* switch findTensorOp to return an optional.
* check that attribute types are correct in findTensorOp
* Check the correct number of outputs for builtins

This also changes emitExpr to return a single SugaredValue

Rather than possibly returning multiple values, emitExpr now
always returns a single value, which _might_ be a tuple. This approach
more closely follows python making the code easier to follow.

Checks for returning the right number of values are now located in
the assignment operator, and occur when unpacking the tuple.

We still pass `n_binders` to function calls so that calls into python
know how many values they should return.
2018-04-12 10:32:49 -07:00
Zachary DeVito
c308e03f3e
Initial GraphExecutor Implementation. (#4982)
This adds the initial implementation of graph executor for the new JIT design. It includes a few python tests ensuring that nograd, backward, and double-backward cases work for simple examples and some corner cases. More work needs to be done to performance optimize as there are many extra copies and places where we hold onto variables longer than we should. These are noted in the comments.
2018-02-02 17:45:59 -08:00