Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.
Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524
Differential Revision: D13547989
Pulled By: suo
fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Enables most of `cppcoreguidelines-*` checks for clang-tidy. Major fixes included:
- Uninitialized members,
- Use of `const_cast`,
- Use of raw `new`
ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12959
Differential Revision: D11349285
Pulled By: goldsborough
fbshipit-source-id: 9e24d643787dfe7ede69f96223c8c0179bd1b2d6
Summary:
This PR does a few things:
Previously test_jit.py only tested autograd on backward graphs.
This is because we borrow from test_autograd and construct graphs with a small
number of nodes. Because the number of nodes is small (typically 1-2), those graph
do not end up containing autodiff subgraphs, so autodiff never gets tested.
This PR enables autodiff testing by doing the following:
- added disableDebugAutodiffSubgraphInlining fn to graph_executor to disable
autodiff subgraph inlining.
- (implementation) added autodiffSubgraphNodeThreshold and autodiffSubgraphInlineThreshold.
These are set to their default values (2, 5) but disableDebugAutodiffSubgraphInlining()
sets both to 1, disabling subgraph inlining and allowing 1-node autodiff subgraphs.
- The relevant backward jit tests disable autodiff subgraph inlining so they
will test the autodiff versions of the operators instead of autograd whenever
an autodiff variant exists.
- We don't run the tests that do inline autodiff subgraphs anymore.
This has no impact on testing correctness because the assumption is
that autograd functions are correct and are tested in test_autograd.py
This allows the graph fuser to work better because a lot of these ops were previously not autodiff-compatible but fusible. On a more concrete example, lstm backward contains a lot of tensor-scalar operations; these autodiff formulas help its double backward pass.
Included:
- arithmetic overloads
- abs, acos, asin, atan, ceil, cos, cosh, exp, expm1, floor, fmod, frac, log, log10, log1p, log2 reciprocal, remainder, round, sin, sinh, tan, trunc, rsqrt
TestJitGenerated tests autodiff for all of the added operations.
cc apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11832
Differential Revision: D10031256
Pulled By: zou3519
fbshipit-source-id: 9daf9900a5ad187743609cd0fbbd10b15411ad93
Summary:
**Review last commit only.** Stacked on top of #10949.
This commit fixes a number of issues connected to caching
differentiability status of graphs inside graph executors,
and changes the rules for optimization of differentiable subgraphs.
Previously every one of those was instantiated as a separate graph
executor, but now they are simply heavier-optimized graph regions,
and graph executors are only instantiated for their backward.
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10977
Differential Revision: D9600626
Pulled By: apaszke
fbshipit-source-id: dad09a0f586e396afbd5406319c1cd54fbb8a3d3
Summary:
More clang tidy cleanups in `torch/csrc`. This time:
1. `hicpp-use-equals-default` recommends `= default` instead of `{}` for constructors/destructors. This is better practice because it expresses the intent better (https://stackoverflow.com/questions/6502828/what-does-default-mean-after-a-class-function-declaration)
2. `readability-inconsistent-declaration-parameter-name` enforces that parameter names in the declaration match parameter names in the definition. This is just generally useful and can prevent confusion and bugs.
Also updated my script a little bit.
apaszke ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9737
Differential Revision: D9069069
Pulled By: goldsborough
fbshipit-source-id: f7b3f3a4eb4c9fadc30425a153566d3b613a41ae
Summary:
This is blocking the IR operator unification, because I need to be able to pass scalars to backward functions.
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9763
Reviewed By: zou3519
Differential Revision: D8978457
Pulled By: apaszke
fbshipit-source-id: 570b4c3409322459cb0f2592069730a7d586ab20
This commit implements the solution proposed in https://github.com/pytorch/pytorch/issues/8410
to workaround the need to create zero tensors with the same shape as inputs.
It introduces the concept of a LinearBlock which marks places in the code
where we know if all the inputs to the node are zero, then the outputs
to the node are also zero. Autodiff introduces LinearBlocks around
backwards functions, which have this property. specializeUndef then
propagates Undef nodes using this information.
Notes:
* Since we do not always specialize, we have a pass LowerLinearBlocks
that replaces the block with an if statement that dynamically guards
the Undef case.
* We introduce AutogradAdd which is addition that still works when
its inputs might be undefined. In cases where we specialize this will
get removed in favor of a normal add, but there are cases where
gradient graphs do not specialize (e.g. when they are not differentiable,
but a derivative is required) so it is important for this op to be executable.
* Fixes to the way script handles multiple values, and other minor fixes.
This commit improves our handling of operators that return multiple values.
Builtins are now checked so that they return the right number of values,
and support for TupleValue is extended to all things that can return
multiple values.
This resolves issues where the compiler accepted things like:
a, b = c + c
This would cause the interpreter to crash. Now each operator knows
how many results it will produce and can check it against the number
of requested inputs.
Notes:
* Allow True/False literals in constant expressions
* make handling of keyword constants more consistent to support True/False
* make parsing constants match the way we construct constants from python
* improve the error messages when accessing bad graph attributes.
* switch findTensorOp to return an optional.
* check that attribute types are correct in findTensorOp
* Check the correct number of outputs for builtins
This also changes emitExpr to return a single SugaredValue
Rather than possibly returning multiple values, emitExpr now
always returns a single value, which _might_ be a tuple. This approach
more closely follows python making the code easier to follow.
Checks for returning the right number of values are now located in
the assignment operator, and occur when unpacking the tuple.
We still pass `n_binders` to function calls so that calls into python
know how many values they should return.
This adds the initial implementation of graph executor for the new JIT design. It includes a few python tests ensuring that nograd, backward, and double-backward cases work for simple examples and some corner cases. More work needs to be done to performance optimize as there are many extra copies and places where we hold onto variables longer than we should. These are noted in the comments.