mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
I have some test code in there as well, along with a script "test_libtorch" to run it. You'll need to modify `test_libtorch` to point to where you have `pytorch` built. I currently require that `pybind11` is included as a subdirectory of the test, but added it to the `.gitignore` to make this reviewable.
Currently, something like this works:
```cpp
struct Foo {
int x, y;
Foo(): x(2), y(5){}
Foo(int x_, int y_) : x(x_), y(y_) {}
void display() {
cout<<"x: "<<x<<' '<<"y: "<<y<<endl;
}
int64_t add(int64_t z) {
return (x+y)*z;
}
};
static auto test = torch::jit::class_<Foo>("Foo")
.def(torch::jit::init<int64_t, int64_t>())
.def("display", &Foo::display)
.def("add", &Foo::add)
.def("combine", &Foo::combine);
```
with
```py
torch.jit.script
def f(x):
val = torch._C.Foo(5, 3)
val.display()
print(val.add(3))
```
results in
```
x: 5 y: 3
24
```
Current issues:
- [x] The python class created by torchscript doesn't interactly properly with the surrounding code.
```
torch.jit.script
def f(x):
val = torch._C.Foo(5, 3)
return val
```
- [x] Doesn't properly take in non-pointer classes. Can't define this function signature in cpp (We don't want to support this I believe).
```cpp
void combine(Foo x) {
```
- [x] Has some issues with memory for blobs when constructing multiple objects (fix constant propagation pass to not treat capsules as the same object).
```py
torch.jit.script
def f(x):
val = torch._C.Foo(5, 3)
val2 = torch._C.Foo(100, 0)
val.display()
print(val.add(3))
```
- [ ] Can't define multiple constructors (need to define overload string. Currently not possible since we don't support overloaded methods).
- [x] `init` is a little bit different syntax than `pybind`. `.init<...>()` instead of `.def(py::init<>())`
- [x] I couldn't figure out how to add some files into the build so they'd be copied to the `include/` directories, so I symlinked them manually.
- [ ] Currently, the conversion from Python into Torchscript doesn't work.
- [ ] Torchbind also currently requires Python/Pybind dependency. Fixing this would probably involve some kind of macro to bind into Python when possible.
- [ ] We pass back into Python by value, currently. There's no way of passing by reference.
- [x] Currently can only register one method with the same type signature. This is because we create a `static auto opRegistry`, and the function is templated on the type signature.
Somewhat blocked on https://github.com/pytorch/pytorch/pull/21177. We currently use some structures that will be refactored by his PR (namely `return_type_to_ivalue` and `ivalue_to_arg_type`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21098
Differential Revision: D16634872
Pulled By: Chillee
fbshipit-source-id: 1408bb89ea649c27d560df59e2cf9920467fe1de
|
||
|---|---|---|
| .. | ||
| _thnn | ||
| autograd | ||
| backends | ||
| contrib | ||
| csrc | ||
| cuda | ||
| distributed | ||
| distributions | ||
| for_onnx | ||
| jit | ||
| legacy | ||
| lib | ||
| multiprocessing | ||
| nn | ||
| onnx | ||
| optim | ||
| quantization | ||
| sparse | ||
| testing | ||
| utils | ||
| __config__.py | ||
| __future__.py | ||
| __init__.py | ||
| __init__.pyi.in | ||
| _classes.py | ||
| _jit_internal.py | ||
| _ops.py | ||
| _six.py | ||
| _storage_docs.py | ||
| _tensor_docs.py | ||
| _tensor_str.py | ||
| _torch_docs.py | ||
| _utils_internal.py | ||
| _utils.py | ||
| abi-check.cpp | ||
| CMakeLists.txt | ||
| custom_class.h | ||
| extension.h | ||
| functional.py | ||
| hub.py | ||
| py.typed | ||
| quasirandom.py | ||
| random.py | ||
| README.txt | ||
| script.h | ||
| serialization.py | ||
| storage.py | ||
| tensor.py | ||
Note [TH abstraction violation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TH/THC provide some hpp headers, which are proper C++ headers rather than C headers. These headers serve double duty as *internal implementation detail* headers, whose contents should largely not be used by external clients. Ideally, we would not install these headers at all; instead, you should use public functions (in headers like `THTensor.h`, NOT `THTensor.hpp`) to manipulate these structs. However, there are a few places in torch/csrc where we violate this abstraction. They are marked with a pointer to this note. Each of those sites will have to be refactored when we refactor the guts of THTensor and related structures.