mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/49138 See for details: https://fb.quip.com/QRtJAin66lPN We need to model optional types explicitly, mostly for schema inference. So we cannot pass a `Tensor?[]` as `ArrayRef<Tensor>`, instead we need to pass it as an optional type. This PR changes it to `torch::List<c10::optional<Tensor>>`. It also makes the ops c10-full that were blocked by this. ## Backwards Compatibility - This should not break the Python API because the representation in Python is the same and python_arg_parser just transforms the python list into a `List<optional<Tensor>>` instead of into a `List<Tensor>`. - This should not break serialized models because there's some logic that allows loading a serialized `List<Tensor>` as `List<optional<Tensor>>`, see https://github.com/pytorch/pytorch/pull/49138/files#diff-9315f5dd045f47114c677174dcaa2f982721233eee1aa19068a42ff3ef775315R57 - This will break backwards compatibility for the C++ API. There is no implicit conversion from `ArrayRef<Tensor>` (which was the old argument type) to `List<optional<Tensor>>`. One common call pattern is `tensor.index({indices_tensor})`, where indices_tensor is another `Tensor`, and that will continue working because the `{}` initializer_list constructor for `List<optional<Tensor>>` can take `Tensor` elements that are implicitly converted to `optional<Tensor>`, but another common call pattern was `tensor.index(indices_tensor)`, where previously, the `Tensor` got implicitly converted to an `ArrayRef<Tensor>`, and to implicitly convert `Tensor -> optional<Tensor> -> List<optional<Tensor>>` would be two implicit conversions. C++ doesn't allow chaining. two implicit conversions. So those call sites have to be rewritten to `tensor.index({indices_tensor})`. ghstack-source-id: 119269131 Test Plan: ## Benchmarks (C++ instruction counts): ### Forward #### Script ```py from torch.utils.benchmark import Timer counts = Timer( stmt=""" auto t = {{op call to measure}}; """, setup=""" using namespace torch::indexing; auto x = torch::ones({4, 4, 4}); """, language="cpp", ).collect_callgrind(number=1_000) print(counts) ``` #### Results | Op call |before |after |delta | | |------------------------------------------------------------------------|---------|--------|-------|------| |x[0] = 1 |11566015 |11566015|0 |0.00% | |x.index({0}) |6807019 |6801019 |-6000 |-0.09%| |x.index({0, 0}) |13529019 |13557019|28000 |0.21% | |x.index({0, 0, 0}) |10677004 |10692004|15000 |0.14% | |x.index({"..."}) |5512015 |5506015 |-6000 |-0.11%| |x.index({Slice(None, None, None)}) |6866016 |6936016 |70000 |1.02% | |x.index({None}) |8554015 |8548015 |-6000 |-0.07%| |x.index({false}) |22400000 |22744000|344000 |1.54% | |x.index({true}) |27624088 |27264393|-359695|-1.30%| |x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})})|123472000|123463306|-8694|-0.01%| ### Autograd #### Script ```py from torch.utils.benchmark import Timer counts = Timer( stmt=""" auto t = {{op call to measure}}; """, setup=""" using namespace torch::indexing; auto x = torch::ones({4, 4, 4}, torch::requires_grad()); """, language="cpp", ).collect_callgrind(number=1_000) print(counts) ``` Note: the script measures the **forward** path of an op call with autograd enabled (i.e. calls into VariableType). It does not measure the backward path. #### Results | Op call |before |after |delta | | |------------------------------------------------------------------------|---------|--------|-------|------| |x.index({0}) |14839019|14833019|-6000| 0.00% | |x.index({0, 0}) |28342019|28370019|28000| 0.00% | |x.index({0, 0, 0}) |24434004|24449004|15000| 0.00% | |x.index({"..."}) |12773015|12767015|-6000| 0.00% | |x.index({Slice(None, None, None)}) |14837016|14907016|70000| 0.47% | |x.index({None}) |15926015|15920015|-6000| 0.00% | |x.index({false}) |36958000|37477000|519000| 1.40% | |x.index({true}) |41971408|42426094|454686| 1.08% | |x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})}) |168184392|164545682|-3638710| -2.16% | Reviewed By: bhosmer Differential Revision: D25454632 fbshipit-source-id: 28ab0cffbbdbdff1c40b4130ca62ee72f981b76d
216 lines
15 KiB
C++
216 lines
15 KiB
C++
#pragma once
|
|
|
|
// NB: Must be at the top of file to avoid including the deprecated "math.h".
|
|
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
|
|
#ifdef _MSC_VER
|
|
#ifndef _USE_MATH_DEFINES
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
#include <cmath>
|
|
#endif
|
|
|
|
#include <torch/csrc/autograd/generated/Functions.h>
|
|
#include <ATen/ATen.h>
|
|
|
|
namespace torch {
|
|
namespace autograd {
|
|
namespace generated {
|
|
namespace details {
|
|
|
|
// A simple way to imperatively compute index ranges for slots
|
|
// that have been flattened
|
|
struct IndexRangeGenerator {
|
|
IndexRange range(size_t range_size) {
|
|
i += range_size;
|
|
return {i - range_size, i};
|
|
}
|
|
size_t size() { return i; }
|
|
private:
|
|
size_t i = 0;
|
|
};
|
|
|
|
bool isFwGradDefined(const c10::optional<Tensor>& t);
|
|
Tensor toLegacyFwGrad(const c10::optional<Tensor>& t);
|
|
Tensor toLegacyPrimal(const c10::optional<Tensor>& t);
|
|
|
|
bool any_variable_defined(variable_list& variables);
|
|
void copy_range(variable_list& out, IndexRange range, const at::Tensor & t);
|
|
void copy_range(variable_list& out, IndexRange range, at::ArrayRef<at::Tensor> t);
|
|
at::Tensor copysign_tensor_self_backward(const Tensor & grad, const Tensor & self, const Tensor & result);
|
|
at::Tensor not_implemented(const char* name);
|
|
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
|
|
at::Tensor maybe_multiply(const at::Tensor & t, const at::Scalar & s);
|
|
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
|
|
Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim);
|
|
Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims);
|
|
at::Tensor norm_backward(const at::Tensor & grad, const at::Tensor & self, const optional<at::Scalar> & p_, const at::Tensor & norm);
|
|
at::Tensor norm_backward(at::Tensor grad, const at::Tensor & self, const optional<at::Scalar> & p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim);
|
|
at::Tensor pow_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & exponent_);
|
|
at::Tensor pow_backward_self(at::Tensor grad, const at::Tensor & self, const at::Tensor & exponent);
|
|
at::Tensor pow_backward_exponent(at::Tensor grad, const at::Tensor& self, const at::Tensor& exponent, at::Tensor result);
|
|
at::Tensor pow_backward_exponent(at::Tensor grad, const at::Scalar & base, const at::Tensor& exponent, at::Tensor result);
|
|
at::Tensor angle_backward(at::Tensor grad, const at::Tensor& self);
|
|
at::Tensor mul_tensor_backward(Tensor grad, Tensor other, ScalarType self_st);
|
|
at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st);
|
|
at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other);
|
|
at::Tensor mvlgamma_backward(at::Tensor grad, const at::Tensor & self, int64_t p);
|
|
at::Tensor permute_backwards(const at::Tensor & grad, at::IntArrayRef fwd_dims);
|
|
at::Tensor rad2deg_backward(const at::Tensor& grad);
|
|
at::Tensor deg2rad_backward(const at::Tensor& grad);
|
|
at::Tensor unsqueeze_multiple(const at::Tensor & t, at::IntArrayRef dim, size_t n_dims);
|
|
at::Tensor sum_backward(const at::Tensor & grad, at::IntArrayRef sizes, at::IntArrayRef dims, bool keepdim);
|
|
at::Tensor nansum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dims, bool keepdim);
|
|
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
|
|
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
|
|
at::Tensor prod_safe_zeros_backward(const at::Tensor &grad, const at::Tensor& inp, int64_t dim);
|
|
at::Tensor prod_backward(const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result);
|
|
at::Tensor prod_backward(at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim);
|
|
at::Tensor solve_backward_self(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A);
|
|
at::Tensor solve_backward_A(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A, const at::Tensor & solution);
|
|
at::Tensor cumsum_backward(const at::Tensor & x, int64_t dim);
|
|
at::Tensor logsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, at::IntArrayRef dim, bool keepdim);
|
|
at::Tensor logcumsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, int64_t dim);
|
|
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
|
|
at::Tensor unsqueeze_to(const at::Tensor & self, at::IntArrayRef sizes);
|
|
at::Tensor unsqueeze_to(const at::Tensor & self, int64_t dim, at::IntArrayRef sizes);
|
|
std::vector<at::Tensor> cat_tensors_backward(const at::Tensor & grad, const std::vector<std::vector<int64_t>> &sizes, int64_t dim);
|
|
at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const optional<at::Scalar> & min, const optional<at::Scalar> & max);
|
|
at::IntArrayRef strides_or_error(const Tensor & input, c10::string_view const & input_name);
|
|
at::Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, at::IntArrayRef mat1_sizes, at::IntArrayRef mat1_strides, const Scalar & alpha);
|
|
at::Tensor mm_mat2_backward(const at::Tensor & grad, const at::Tensor & mat1, at::IntArrayRef sizes, at::IntArrayRef strides, const at::Scalar & alpha);
|
|
at::Tensor _sparse_addmm_sparse_backward(const at::Tensor& grad, const at::Tensor& sparse_, const at::Tensor& dense, const at::Scalar& alpha);
|
|
at::Tensor sparse_sparse_matmul_backward(const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2,int64_t grad_order);
|
|
at::Tensor renorm_backward(const at::Tensor & grad, const at::Tensor & self, at::Scalar p, int64_t dim, at::Scalar maxnorm);
|
|
at::Tensor repeat_backward(at::Tensor grad, at::IntArrayRef repeats, at::IntArrayRef input_shape);
|
|
at::Tensor _fused_dropout_backward(at::Tensor grad, at::Tensor mask, double p1m);
|
|
at::Tensor evenly_distribute_backward(at::Tensor grad, const at::Tensor & input, const at::Tensor & value);
|
|
at::Tensor sgn_backward(Tensor result, Tensor grad, Tensor self);
|
|
at::Tensor var_backward(const at::Tensor & grad, const at::Tensor & self, bool unbiased);
|
|
at::Tensor var_backward(at::Tensor grad, const at::Tensor & self, at::IntArrayRef dim, bool unbiased, bool keepdim);
|
|
at::Tensor std_backward(const at::Tensor & result, const at::Tensor & grad, const at::Tensor & self, bool unbiased);
|
|
at::Tensor std_backward(const at::Tensor & result, at::Tensor grad, const at::Tensor & self, at::IntArrayRef dim, bool unbiased, bool keepdim);
|
|
at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, at::IntArrayRef dim, bool keepdim);
|
|
at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, int numel);
|
|
at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor & self, const at::Tensor & r1, const at::Tensor & r2, at::IntArrayRef dim, bool unbiased, bool keepdim, bool is_std);
|
|
at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor & self, const at::Tensor & r1, const at::Tensor & r2, bool unbiased, bool is_std);
|
|
at::Tensor masked_scatter_backward(const at::Tensor & grad, const at::Tensor & mask, at::IntArrayRef sizes);
|
|
at::Tensor cholesky_backward(at::Tensor grad, bool upper, at::Tensor L);
|
|
at::Tensor cholesky_inverse_backward(at::Tensor grad, at::Tensor L, bool upper, at::Tensor inverse);
|
|
at::Tensor split_with_sizes_backward(const std::vector<torch::autograd::Variable> &grads,
|
|
IntArrayRef split_sizes, int64_t dim, IntArrayRef sizes, const at::TensorOptions &options);
|
|
at::Tensor split_backward(const std::vector<torch::autograd::Variable> &grads, int64_t split_size, int64_t dim, at::IntArrayRef sizes, const at::TensorOptions &options);
|
|
at::Tensor max_pool_double_backward(const at::Tensor & grad, const at::Tensor & indices, int dim);
|
|
at::Tensor glu_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, int64_t dim);
|
|
at::Tensor glu_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, int64_t dim);
|
|
at::Tensor infinitely_differentiable_silu_backward(const at::Tensor& grad_output, const at::Tensor& input);
|
|
Tensor infinitely_differentiable_logit_backward(const Tensor& grad, const Tensor& self, c10::optional<double> eps);
|
|
at::Tensor kl_div_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, bool log_target);
|
|
at::Tensor binary_cross_entropy_with_logits_target_backward(const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const c10::optional<at::Tensor>& weight, const c10::optional<at::Tensor>& pos_weight, int64_t reduction);
|
|
at::Tensor log_sigmoid_double_backward(const at::Tensor & grad, const at::Tensor & input);
|
|
at::Tensor softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output);
|
|
at::Tensor log_softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output);
|
|
at::Tensor binary_cross_entropy_double_backward(const at::Tensor & grad_output, const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction);
|
|
at::Tensor binary_cross_entropy_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction);
|
|
at::Tensor l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor smooth_l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta);
|
|
at::Tensor smooth_l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta);
|
|
at::Tensor mse_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, int64_t reduction);
|
|
at::Tensor mse_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor soft_margin_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor soft_margin_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor softplus_double_backward(const at::Tensor & grad, const at::Tensor & input, at::Scalar beta, at::Scalar threshold);
|
|
at::Tensor logdet_backward(const at::Tensor & grad, const at::Tensor& self, const at::Tensor& logdet);
|
|
at::Tensor slogdet_backward(const at::Tensor& grad_logabsdet, const at::Tensor& self, const at::Tensor& signdet, const at::Tensor& logabsdet);
|
|
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
|
|
at::Tensor sparse_constructor_values_backward(const at::Tensor& sparse_grad_out, const at::Tensor& indices, at::IntArrayRef values_shape);
|
|
at::Tensor embedding_dense_double_backward(const at::Tensor & grad, const at::Tensor & indices, int64_t padding_idx);
|
|
at::Tensor index_backward(at::Tensor zeros_like_self, const torch::List<c10::optional<Tensor>>& indices, const at::Tensor& grad);
|
|
at::Tensor _cudnn_ctc_loss_backward(const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity);
|
|
|
|
Tensor svd_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
bool some, bool compute_uv, const Tensor& raw_u, const Tensor& sigma, const Tensor& raw_v);
|
|
Tensor symeig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
bool eigenvectors, bool upper, const Tensor& lambda, const Tensor& v);
|
|
std::tuple<Tensor, Tensor> triangular_solve_backward(
|
|
const Tensor & grad_x, const Tensor & grad_m,
|
|
const Tensor & b, const Tensor & a, const Tensor & x,
|
|
const bool upper, const bool transpose, const bool unitriangular,
|
|
std::array<bool, 2> output_mask);
|
|
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(const Tensor& grad_out, const Tensor& i1, const Tensor& i2, const Tensor& i3,
|
|
IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3,
|
|
IntArrayRef sumdim, int64_t unroll_dim, std::array<bool, 3> grad_mask);
|
|
Tensor linalg_qr_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
std::string mode, const Tensor& Q, const Tensor& R);
|
|
Tensor eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
bool eigenvectors, const Tensor& lambda, const Tensor& v);
|
|
Tensor det_backward(const Tensor & grad, const Tensor& self, const Tensor& det);
|
|
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
|
|
const Tensor & input,
|
|
const c10::optional<Tensor> & gamma,
|
|
const Tensor & ggI,
|
|
const Tensor & ggG,
|
|
const Tensor & ggB,
|
|
const Tensor & gO,
|
|
const c10::optional<Tensor> & running_mean,
|
|
const c10::optional<Tensor> & running_var,
|
|
bool training,
|
|
double eps,
|
|
const c10::optional<Tensor> & save_mean,
|
|
const c10::optional<Tensor> & save_invstd,
|
|
std::array<bool,3> output_mask);
|
|
std::tuple<Tensor, Tensor> _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res);
|
|
Tensor kl_div_target_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction, bool log_target);
|
|
Tensor fft_backward(const Tensor& self, const Tensor& grad, int64_t signal_ndim,
|
|
bool complex_input, bool complex_output,
|
|
bool inverse, IntArrayRef checked_signal_sizes,
|
|
int64_t normalization, bool onesided,
|
|
IntArrayRef output_sizes);
|
|
Tensor fft_r2c_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization,
|
|
bool onesided, int64_t last_dim_size);
|
|
Tensor fft_c2r_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization);
|
|
Tensor constant_pad_nd_backward(const Tensor& grad, IntArrayRef pad);
|
|
std::tuple<Tensor, Tensor> cholesky_solve_backward(
|
|
const Tensor& grad_x, const Tensor& self,
|
|
const Tensor& input2, const Tensor& result, const bool upper);
|
|
std::tuple<Tensor, Tensor, Tensor>
|
|
infinitely_differentiable_native_group_norm_backward(
|
|
const Tensor& dY,
|
|
const Tensor& dmean,
|
|
const Tensor& drstd,
|
|
const Tensor& X,
|
|
const Tensor& mean,
|
|
const Tensor& rstd,
|
|
const c10::optional<Tensor>& gamma,
|
|
int64_t N,
|
|
int64_t C,
|
|
int64_t HxW,
|
|
int64_t group,
|
|
double eps,
|
|
std::array<bool, 3> grad_input_mask);
|
|
std::tuple<Tensor, Tensor, Tensor> prelu_double_backward(
|
|
const Tensor & grad_grad_input,
|
|
const Tensor & grad_grad_weight,
|
|
const Tensor & grad_out,
|
|
const Tensor & input_,
|
|
const Tensor & weight_);
|
|
Tensor as_strided_backward(Tensor grad, TensorGeometry input_geometry, IntArrayRef sizes, IntArrayRef strides, optional<int64_t> storage_offset_);
|
|
std::tuple<Tensor, Tensor> atan2_backward(const Tensor& grad, const Tensor& self, const Tensor& other, std::array<bool, 2> output_mask);
|
|
std::tuple<Tensor, Tensor, Tensor>
|
|
infinitely_differentiable_native_layer_norm_backward(
|
|
const Tensor& dY,
|
|
const Tensor& dmean,
|
|
const Tensor& drstd,
|
|
const Tensor& X,
|
|
const Tensor& mean,
|
|
const Tensor& rstd,
|
|
const c10::optional<Tensor>& gamma,
|
|
IntArrayRef normalized_shape,
|
|
double eps,
|
|
std::array<bool, 3> grad_input_mask);
|
|
|
|
|
|
} // namespace details
|
|
} // namespace generated
|
|
} // namespace autograd
|
|
} // namespace torch
|