#pragma once // NB: Must be at the top of file to avoid including the deprecated "math.h". // https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio #ifdef _MSC_VER #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include #endif #include #include namespace torch { namespace autograd { namespace generated { namespace details { // A simple way to imperatively compute index ranges for slots // that have been flattened struct IndexRangeGenerator { IndexRange range(size_t range_size) { i += range_size; return {i - range_size, i}; } size_t size() { return i; } private: size_t i = 0; }; bool isFwGradDefined(const c10::optional& t); Tensor toLegacyFwGrad(const c10::optional& t); Tensor toLegacyPrimal(const c10::optional& t); bool any_variable_defined(variable_list& variables); void copy_range(variable_list& out, IndexRange range, const at::Tensor & t); void copy_range(variable_list& out, IndexRange range, at::ArrayRef t); at::Tensor copysign_tensor_self_backward(const Tensor & grad, const Tensor & self, const Tensor & result); at::Tensor not_implemented(const char* name); at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result); at::Tensor maybe_multiply(const at::Tensor & t, const at::Scalar & s); int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim); Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim); Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims); at::Tensor norm_backward(const at::Tensor & grad, const at::Tensor & self, const optional & p_, const at::Tensor & norm); at::Tensor norm_backward(at::Tensor grad, const at::Tensor & self, const optional & p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim); at::Tensor pow_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & exponent_); at::Tensor pow_backward_self(at::Tensor grad, const at::Tensor & self, const at::Tensor & exponent); at::Tensor pow_backward_exponent(at::Tensor grad, const at::Tensor& self, const at::Tensor& exponent, at::Tensor result); at::Tensor pow_backward_exponent(at::Tensor grad, const at::Scalar & base, const at::Tensor& exponent, at::Tensor result); at::Tensor angle_backward(at::Tensor grad, const at::Tensor& self); at::Tensor mul_tensor_backward(Tensor grad, Tensor other, ScalarType self_st); at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st); at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other); at::Tensor mvlgamma_backward(at::Tensor grad, const at::Tensor & self, int64_t p); at::Tensor permute_backwards(const at::Tensor & grad, at::IntArrayRef fwd_dims); at::Tensor rad2deg_backward(const at::Tensor& grad); at::Tensor deg2rad_backward(const at::Tensor& grad); at::Tensor unsqueeze_multiple(const at::Tensor & t, at::IntArrayRef dim, size_t n_dims); at::Tensor sum_backward(const at::Tensor & grad, at::IntArrayRef sizes, at::IntArrayRef dims, bool keepdim); at::Tensor nansum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dims, bool keepdim); std::vector reverse_list(const at::IntArrayRef list); at::Tensor reverse_dim(const at::Tensor& t, int64_t dim); at::Tensor prod_safe_zeros_backward(const at::Tensor &grad, const at::Tensor& inp, int64_t dim); at::Tensor prod_backward(const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result); at::Tensor prod_backward(at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim); at::Tensor solve_backward_self(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A); at::Tensor solve_backward_A(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A, const at::Tensor & solution); at::Tensor cumsum_backward(const at::Tensor & x, int64_t dim); at::Tensor logsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, at::IntArrayRef dim, bool keepdim); at::Tensor logcumsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, int64_t dim); at::Tensor unbind_backward(const variable_list& grads, int64_t dim); at::Tensor unsqueeze_to(const at::Tensor & self, at::IntArrayRef sizes); at::Tensor unsqueeze_to(const at::Tensor & self, int64_t dim, at::IntArrayRef sizes); std::vector cat_tensors_backward(const at::Tensor & grad, const std::vector> &sizes, int64_t dim); at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const optional & min, const optional & max); at::IntArrayRef strides_or_error(const Tensor & input, c10::string_view const & input_name); at::Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, at::IntArrayRef mat1_sizes, at::IntArrayRef mat1_strides, const Scalar & alpha); at::Tensor mm_mat2_backward(const at::Tensor & grad, const at::Tensor & mat1, at::IntArrayRef sizes, at::IntArrayRef strides, const at::Scalar & alpha); at::Tensor _sparse_addmm_sparse_backward(const at::Tensor& grad, const at::Tensor& sparse_, const at::Tensor& dense, const at::Scalar& alpha); at::Tensor sparse_sparse_matmul_backward(const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2,int64_t grad_order); at::Tensor renorm_backward(const at::Tensor & grad, const at::Tensor & self, at::Scalar p, int64_t dim, at::Scalar maxnorm); at::Tensor repeat_backward(at::Tensor grad, at::IntArrayRef repeats, at::IntArrayRef input_shape); at::Tensor _fused_dropout_backward(at::Tensor grad, at::Tensor mask, double p1m); at::Tensor evenly_distribute_backward(at::Tensor grad, const at::Tensor & input, const at::Tensor & value); at::Tensor sgn_backward(Tensor result, Tensor grad, Tensor self); at::Tensor var_backward(const at::Tensor & grad, const at::Tensor & self, bool unbiased); at::Tensor var_backward(at::Tensor grad, const at::Tensor & self, at::IntArrayRef dim, bool unbiased, bool keepdim); at::Tensor std_backward(const at::Tensor & result, const at::Tensor & grad, const at::Tensor & self, bool unbiased); at::Tensor std_backward(const at::Tensor & result, at::Tensor grad, const at::Tensor & self, at::IntArrayRef dim, bool unbiased, bool keepdim); at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, at::IntArrayRef dim, bool keepdim); at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, int numel); at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor & self, const at::Tensor & r1, const at::Tensor & r2, at::IntArrayRef dim, bool unbiased, bool keepdim, bool is_std); at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor & self, const at::Tensor & r1, const at::Tensor & r2, bool unbiased, bool is_std); at::Tensor masked_scatter_backward(const at::Tensor & grad, const at::Tensor & mask, at::IntArrayRef sizes); at::Tensor cholesky_backward(at::Tensor grad, bool upper, at::Tensor L); at::Tensor cholesky_inverse_backward(at::Tensor grad, at::Tensor L, bool upper, at::Tensor inverse); at::Tensor split_with_sizes_backward(const std::vector &grads, IntArrayRef split_sizes, int64_t dim, IntArrayRef sizes, const at::TensorOptions &options); at::Tensor split_backward(const std::vector &grads, int64_t split_size, int64_t dim, at::IntArrayRef sizes, const at::TensorOptions &options); at::Tensor max_pool_double_backward(const at::Tensor & grad, const at::Tensor & indices, int dim); at::Tensor glu_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, int64_t dim); at::Tensor glu_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, int64_t dim); at::Tensor infinitely_differentiable_silu_backward(const at::Tensor& grad_output, const at::Tensor& input); Tensor infinitely_differentiable_logit_backward(const Tensor& grad, const Tensor& self, c10::optional eps); at::Tensor kl_div_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, bool log_target); at::Tensor binary_cross_entropy_with_logits_target_backward(const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const c10::optional& weight, const c10::optional& pos_weight, int64_t reduction); at::Tensor log_sigmoid_double_backward(const at::Tensor & grad, const at::Tensor & input); at::Tensor softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output); at::Tensor log_softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output); at::Tensor binary_cross_entropy_double_backward(const at::Tensor & grad_output, const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional& weight, int64_t reduction); at::Tensor binary_cross_entropy_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional& weight, int64_t reduction); at::Tensor l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction); at::Tensor smooth_l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta); at::Tensor smooth_l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta); at::Tensor mse_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, int64_t reduction); at::Tensor mse_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); at::Tensor soft_margin_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction); at::Tensor soft_margin_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); at::Tensor softplus_double_backward(const at::Tensor & grad, const at::Tensor & input, at::Scalar beta, at::Scalar threshold); at::Tensor logdet_backward(const at::Tensor & grad, const at::Tensor& self, const at::Tensor& logdet); at::Tensor slogdet_backward(const at::Tensor& grad_logabsdet, const at::Tensor& self, const at::Tensor& signdet, const at::Tensor& logabsdet); at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self); at::Tensor sparse_constructor_values_backward(const at::Tensor& sparse_grad_out, const at::Tensor& indices, at::IntArrayRef values_shape); at::Tensor embedding_dense_double_backward(const at::Tensor & grad, const at::Tensor & indices, int64_t padding_idx); at::Tensor index_backward(at::Tensor zeros_like_self, const torch::List>& indices, const at::Tensor& grad); at::Tensor _cudnn_ctc_loss_backward(const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity); Tensor svd_backward(const std::vector &grads, const Tensor& self, bool some, bool compute_uv, const Tensor& raw_u, const Tensor& sigma, const Tensor& raw_v); Tensor symeig_backward(const std::vector &grads, const Tensor& self, bool eigenvectors, bool upper, const Tensor& lambda, const Tensor& v); std::tuple triangular_solve_backward( const Tensor & grad_x, const Tensor & grad_m, const Tensor & b, const Tensor & a, const Tensor & x, const bool upper, const bool transpose, const bool unitriangular, std::array output_mask); std::tuple _trilinear_backward(const Tensor& grad_out, const Tensor& i1, const Tensor& i2, const Tensor& i3, IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, IntArrayRef sumdim, int64_t unroll_dim, std::array grad_mask); Tensor linalg_qr_backward(const std::vector &grads, const Tensor& self, std::string mode, const Tensor& Q, const Tensor& R); Tensor eig_backward(const std::vector &grads, const Tensor& self, bool eigenvectors, const Tensor& lambda, const Tensor& v); Tensor det_backward(const Tensor & grad, const Tensor& self, const Tensor& det); std::tuple batchnorm_double_backward( const Tensor & input, const c10::optional & gamma, const Tensor & ggI, const Tensor & ggG, const Tensor & ggB, const Tensor & gO, const c10::optional & running_mean, const c10::optional & running_var, bool training, double eps, const c10::optional & save_mean, const c10::optional & save_invstd, std::array output_mask); std::tuple _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res); Tensor kl_div_target_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction, bool log_target); Tensor fft_backward(const Tensor& self, const Tensor& grad, int64_t signal_ndim, bool complex_input, bool complex_output, bool inverse, IntArrayRef checked_signal_sizes, int64_t normalization, bool onesided, IntArrayRef output_sizes); Tensor fft_r2c_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization, bool onesided, int64_t last_dim_size); Tensor fft_c2r_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization); Tensor constant_pad_nd_backward(const Tensor& grad, IntArrayRef pad); std::tuple cholesky_solve_backward( const Tensor& grad_x, const Tensor& self, const Tensor& input2, const Tensor& result, const bool upper); std::tuple infinitely_differentiable_native_group_norm_backward( const Tensor& dY, const Tensor& dmean, const Tensor& drstd, const Tensor& X, const Tensor& mean, const Tensor& rstd, const c10::optional& gamma, int64_t N, int64_t C, int64_t HxW, int64_t group, double eps, std::array grad_input_mask); std::tuple prelu_double_backward( const Tensor & grad_grad_input, const Tensor & grad_grad_weight, const Tensor & grad_out, const Tensor & input_, const Tensor & weight_); Tensor as_strided_backward(Tensor grad, TensorGeometry input_geometry, IntArrayRef sizes, IntArrayRef strides, optional storage_offset_); std::tuple atan2_backward(const Tensor& grad, const Tensor& self, const Tensor& other, std::array output_mask); std::tuple infinitely_differentiable_native_layer_norm_backward( const Tensor& dY, const Tensor& dmean, const Tensor& drstd, const Tensor& X, const Tensor& mean, const Tensor& rstd, const c10::optional& gamma, IntArrayRef normalized_shape, double eps, std::array grad_input_mask); } // namespace details } // namespace generated } // namespace autograd } // namespace torch