Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49138
See for details: https://fb.quip.com/QRtJAin66lPN
We need to model optional types explicitly, mostly for schema inference. So we cannot pass a `Tensor?[]` as `ArrayRef<Tensor>`, instead we need to pass it as an optional type. This PR changes it to `torch::List<c10::optional<Tensor>>`. It also makes the ops c10-full that were blocked by this.
## Backwards Compatibility
- This should not break the Python API because the representation in Python is the same and python_arg_parser just transforms the python list into a `List<optional<Tensor>>` instead of into a `List<Tensor>`.
- This should not break serialized models because there's some logic that allows loading a serialized `List<Tensor>` as `List<optional<Tensor>>`, see https://github.com/pytorch/pytorch/pull/49138/files#diff-9315f5dd045f47114c677174dcaa2f982721233eee1aa19068a42ff3ef775315R57
- This will break backwards compatibility for the C++ API. There is no implicit conversion from `ArrayRef<Tensor>` (which was the old argument type) to `List<optional<Tensor>>`. One common call pattern is `tensor.index({indices_tensor})`, where indices_tensor is another `Tensor`, and that will continue working because the `{}` initializer_list constructor for `List<optional<Tensor>>` can take `Tensor` elements that are implicitly converted to `optional<Tensor>`, but another common call pattern was `tensor.index(indices_tensor)`, where previously, the `Tensor` got implicitly converted to an `ArrayRef<Tensor>`, and to implicitly convert `Tensor -> optional<Tensor> -> List<optional<Tensor>>` would be two implicit conversions. C++ doesn't allow chaining. two implicit conversions. So those call sites have to be rewritten to `tensor.index({indices_tensor})`.
ghstack-source-id: 119269131
Test Plan:
## Benchmarks (C++ instruction counts):
### Forward
#### Script
```py
from torch.utils.benchmark import Timer
counts = Timer(
stmt="""
auto t = {{op call to measure}};
""",
setup="""
using namespace torch::indexing;
auto x = torch::ones({4, 4, 4});
""",
language="cpp",
).collect_callgrind(number=1_000)
print(counts)
```
#### Results
| Op call |before |after |delta | |
|------------------------------------------------------------------------|---------|--------|-------|------|
|x[0] = 1 |11566015 |11566015|0 |0.00% |
|x.index({0}) |6807019 |6801019 |-6000 |-0.09%|
|x.index({0, 0}) |13529019 |13557019|28000 |0.21% |
|x.index({0, 0, 0}) |10677004 |10692004|15000 |0.14% |
|x.index({"..."}) |5512015 |5506015 |-6000 |-0.11%|
|x.index({Slice(None, None, None)}) |6866016 |6936016 |70000 |1.02% |
|x.index({None}) |8554015 |8548015 |-6000 |-0.07%|
|x.index({false}) |22400000 |22744000|344000 |1.54% |
|x.index({true}) |27624088 |27264393|-359695|-1.30%|
|x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})})|123472000|123463306|-8694|-0.01%|
### Autograd
#### Script
```py
from torch.utils.benchmark import Timer
counts = Timer(
stmt="""
auto t = {{op call to measure}};
""",
setup="""
using namespace torch::indexing;
auto x = torch::ones({4, 4, 4}, torch::requires_grad());
""",
language="cpp",
).collect_callgrind(number=1_000)
print(counts)
```
Note: the script measures the **forward** path of an op call with autograd enabled (i.e. calls into VariableType). It does not measure the backward path.
#### Results
| Op call |before |after |delta | |
|------------------------------------------------------------------------|---------|--------|-------|------|
|x.index({0}) |14839019|14833019|-6000| 0.00% |
|x.index({0, 0}) |28342019|28370019|28000| 0.00% |
|x.index({0, 0, 0}) |24434004|24449004|15000| 0.00% |
|x.index({"..."}) |12773015|12767015|-6000| 0.00% |
|x.index({Slice(None, None, None)}) |14837016|14907016|70000| 0.47% |
|x.index({None}) |15926015|15920015|-6000| 0.00% |
|x.index({false}) |36958000|37477000|519000| 1.40% |
|x.index({true}) |41971408|42426094|454686| 1.08% |
|x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})}) |168184392|164545682|-3638710| -2.16% |
Reviewed By: bhosmer
Differential Revision: D25454632
fbshipit-source-id: 28ab0cffbbdbdff1c40b4130ca62ee72f981b76d
Summary:
I am opening this PR early to have a place to discuss design issues.
The biggest difference between `torch.qr` and `numpy.linalg.qr` is that the former `torch.qr` takes a boolean parameter `some=True`, while the latter takes a string parameter `mode='reduced'` which can be one of the following:
`reduced`
this is completely equivalent to `some=True`, and both are the default.
`complete`
this is completely equivalent to `some=False`.
`r`
this returns only `r` instead of a tuple `(r, q)`. We have already decided that we don't want different return types depending on the parameters, so I propose to return `(r, empty_tensor)` instead. I **think** that in this mode it will be impossible to implement the backward pass, so we should raise an appropriate error in that case.
`raw`
in this mode, it returns `(h, tau)` instead of `(q, r)`. Internally, `h` and `tau` are obtained by calling lapack's `dgeqrf` and are later used to compute the actual values of `(q, r)`. The numpy docs suggest that these might be useful to call other lapack functions, but at the moment none of them is exposed by numpy and I don't know how often it is used in the real world.
I suppose the implementing the backward pass need attention to: the most straightforward solution is to use `(h, tau)` to compute `(q, r)` and then use the normal logic for `qr_backward`, but there might be faster alternatives.
`full`, `f`
alias for `reduced`, deprecated since numpy 1.8.0
`economic`, `e`
similar to `raw but it returns only `h` instead of `(h, tau). Deprecated since numpy 1.8.0
To summarize:
* `reduce`, `complete` and `r` are straightforward to implement.
* `raw` needs a bit of extra care, but I don't know how much high priority it is: since it is used rarely, we might want to not support it right now and maybe implement it in the future?
* I think we should just leave `full` and `economic` out, and possibly add a note to the docs explaining what you need to use instead
/cc mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47764
Reviewed By: ngimel
Differential Revision: D25708870
Pulled By: mruberry
fbshipit-source-id: c25c70a23a02ec4322430d636542041e766ebe1b
Summary:
This PR is to change the `aten::native_layer_norm` and `aten::native_layer_norm_backward` signature to match `torch.layer_norm` definition. The current definition doesn't provide enough information to the PyTorch JIT to fuse layer_norm during training.
`native_layer_norm(X, gamma, beta, M, N, eps)` =>
`native_layer_norm(input, normalized_shape, weight, bias, eps)`
`native_layer_norm_backward(dY, X, mean, rstd, gamma, M, N, grad_input_mask)` =>
`native_layer_norm_backward(dY, input, normalized_shape, mean, rstd, weight, bias, grad_input_mask)`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48971
Reviewed By: izdeby
Differential Revision: D25574070
Pulled By: ngimel
fbshipit-source-id: 23e2804295a95bda3f1ca6b41a1e4c5a3d4d31b4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44433
Not entirely sure why, but changing the type of beta from `float` to `double in autocast_mode.cpp and FunctionsManual.h fixes my compiler errors, failing instead at link time
fixing some type errors, updated fn signature in a few more files
removing my usage of Scalar, making beta a double everywhere instead
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D23636720
Pulled By: bdhirsh
fbshipit-source-id: caea2a1f8dd72b3b5fd1d72dd886b2fcd690af6d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39955
resolves https://github.com/pytorch/pytorch/issues/36323 by adding `torch.sgn` for complex tensors.
`torch.sgn` returns `x/abs(x)` for `x != 0` and returns `0 + 0j` for `x==0`
This PR doesn't test the correctness of the gradients. It will be done as a part of auditing all the ops in future once we decide the autograd behavior (JAX vs TF) and add gradchek.
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D23460526
Pulled By: anjali411
fbshipit-source-id: 70fc4e14e4d66196e27cf188e0422a335fc42f92
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43208
This PR adds gradcheck for complex. The logic used for complex gradcheck is described in Section 3.5.3 here: https://arxiv.org/pdf/1701.00392.pdf
More concretely, this PR introduces the following changes:
1. Updates get_numerical_jacobian to take as input a scalar value for vector (v). Adds gradcheck logic for C -> C, C-> R, R -> C. For R -> C functions, only the real value of gradient is propagated.
2. Adds backward definition for `torch.complex` and also adds a test to verify the definition added.
3. Updates backward for `mul`, `sin`, `cos`, `sinh`, `cosh`.
4. Adds tests for all `torch.real`, `torch.imag`, `torch.view_as_real`, `torch.view_as_complex`, `torch.conj`.
Follow up tasks:
1. Add more thorough tests for R -> C cases. Specifically, add R->C test variants for functions. for e.g., `torch.mul(complex_tensor, real_tensor)`
2. Add back commented test in `common_methods_invocation.py`.
3. Add more special case checking for complex gradcheck to make debugging easier.
4. Update complex autograd note.
5. disable complex autograd for operators not tested for complex.
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D23655088
Pulled By: anjali411
fbshipit-source-id: caa75e09864b5f6ead0f988f6368dce64cf15deb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44410
See #44052 for context. One of the cumprod_backward overloads was unused
so I just deleted it.
Test Plan: - `pytest test/test_autograd.py -v`
Reviewed By: mrshenli
Differential Revision: D23605503
Pulled By: zou3519
fbshipit-source-id: f9c5b595e62d2d6e71f26580ba96df15cc9de4f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44052
Summary
=======
This PR registers the following backwards functions as operators:
- slice_backward
- select_backward
- gather_backward
- index_select_backward (the backward function for index_select)
- select_index_backward (prevously known as index_select_backward, but is actually the backward function for max.dim, min.dim, etc)
In the future, I'd like to register more backward functions as operators
so that we can write batching rules for the backward functions. Batching
rules for backward functions makes it so that we can compute batched
gradients.
Motivation
==========
The rationale behind this PR is that a lot of backwards functions (27 in total)
are incompatible with BatchedTensor due to using in-place operations.
Sometimes we can allow the in-place operations, but other times we can't.
For example, consider select_backward:
```
Tensor select_backward(const Tensor& grad, IntArrayRef input_sizes, int64_t dim, int64_t index) {
auto grad_input = at::zeros(input_sizes, grad.options());
grad_input.select(dim, index).copy_(grad);
return grad_input;
}
```
and consider the following code:
```
x = torch.randn(5, requires_grad=True)
def select_grad(v):
torch.autograd.grad(x[0], x, v)
vs = torch.randn(B0)
batched_grads = vmap(select_grad)(vs)
```
For the batched gradient use case, `grad` is a BatchedTensor.
The physical version of `grad` has size `(B0,)`.
However, select_backward creates a `grad_input` of shape `(5)`, and
tries to copy `grad` to a slice of it.
Other approaches
================
I've considered the following:
- register select_backward as an operator (this PR)
- have a branch inside select_backward for if `grad` is batched.
- this is OK, but what if we have more tensor extensions that want to override this?
- modify select_backward to work with BatchedTensor, by creating a new operator for the "select + copy_ behavior".
- select + copy_ isn't used elsewhere in derivative formulas so this doesn't seem useful
Test Plan
=========
- `pytest test/test_autograd.py -v`
- Registering backward functions may impact performance. I benchmarked
select_backward to see if registering it as an operator led to any noticable
performance overheads: https://gist.github.com/zou3519/56d6cb53775649047b0e66de6f0007dc.
The TL;DR is that the overhead is pretty minimal.
Test Plan: Imported from OSS
Reviewed By: ezyang, fbhuba
Differential Revision: D23481183
Pulled By: zou3519
fbshipit-source-id: 125af62eb95824626dc83d06bbc513262ee27350
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43711
this makes them available in forward if needed
No change to the file content, just a copy-paste.
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D23454146
Pulled By: albanD
fbshipit-source-id: 6269a4aaf02ed53870fadf8b769ac960e49af195