Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49463
set_quantizer_ takes a ConstQuantizerPtr argument, which is neither supported by JIT nor by c10.
Also, it doesn't get dispatched (CPU and CUDA have the same implementation) and it is excluded from python bindings generation.
So there is no real reason why this needs to be in native_functions.yaml
Removing it unblocks the migration to c10-fullness since this is an op that would have been hard to migrate. See https://fb.quip.com/QRtJAin66lPN
ghstack-source-id: 118710663
Test Plan: waitforsandcastle
Reviewed By: ezyang
Differential Revision: D25587763
fbshipit-source-id: 8fab921f4c256c128d48d82dac731f04ec9bad92
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49056
This is another byte-for-byte compatibility hack. I'm now sorting pyi signature overloads (previously the codegen did not).
Mostly put this in a separate PR just to more easily reason about the diff in the codegen output.
Test Plan: Imported from OSS
Reviewed By: ljk53
Differential Revision: D25410846
Pulled By: bdhirsh
fbshipit-source-id: 06e5c32edbce610dd12ec7499014b41b23c646bd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49054
These are some followups from the first pyi codegen PR. Still maintaining byte-for-byte compatibility in this one.
- Separated `argument_str() with a pyi flag into two functions, `argument_str()` and `argument_str_pyi()`
- Added a notes section for pyi at the top of `python.py`
- Added a `Python Interface` section that I moved the free-standing pyi functions to
Test Plan: Imported from OSS
Reviewed By: ljk53
Differential Revision: D25410848
Pulled By: bdhirsh
fbshipit-source-id: db83a80af900c32b5e32d67ce27767f6e7c2adfb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48754
The goal of this PR is to kill Declarations.yaml in the pyi codegen, in favor of native_functions + the existing python object model.
**High-level design**
Since the python signatures used by the `python_arg_parser` are “supposed” to resemble the corresponding pyi type hint signatures, I re-used the existing python object model that Jiakai defined in `tools/codegen/api/python.py`. This means that the pyi codegen now reads `native_functions.yaml`, parses it into a bunch of `PythonSignatureGroup` objects, and emits corresponding method + function variants of type-hint signatures for each one, respectively into `__init__.pyi` and `_VariableFunctions.pyi`.
What makes this uglier is that pyi and the python arg parser have a number of differences in how they’re emitted. I expressed that through a `pyi` flag on the `PythonSignature` dataclass, that tells it whether or not to print itself as a pyi vs. arg_parser signature.
One thing worth noting is how pyi generates signatures differently for native / deprecated op signatures.
For native ops:
- The pyi codegen fuses functional and out variants of each op into a single signature with an optional `out` argument. Ops without an `out` variant just get an ordinary functional signature.
- Some ops that fit certain criteria also get a second “varargs” signature - basically ops with a single positional argument of type List[int].
For deprecated signatures:
- Functional and out variants are not fused - they each get their own signature entry
- There are no varargs signatures
This is currently implemented through the `signature_str()` and `signature_str_vararg()` methods on the `PythonSignature`/`PythonSignatureDeprecated` classes. `signature_str()` knows how to print itself with/without out arguments, differently for native/deprecated ops. `signature_str_vararg()` optionally returns a vararg variant of the signature if one exists.
**Calling out the gap between python_arg_parser vs. pyi**
The two formats are notably different, so I don’t think we can expect to unify them completely. That said, I encountered a number of differences in the pyi codegen that looked wrong- I tried to call them out in the PR, to be removed later. Just as an example, looking at the `svd` signature in the python_arg_parser vs. the pyi type hint:
python_arg_parser
```
Static PythonArgParser parser({
“svd(Tensor input, bool some=True, bool compute_uv=True, *, TensorList[3] out=None”,
}, /*traceable=*/true);
```
Pyi
```
def svd(input: Tensor, some: _bool=True, compute_uv: _bool=True, *, out: Optional[Tensor]=None) -> namedtuple_U_S_V: …
```
The two have obvious syntactic differences that we probably don’t plan on changing: the python_arg_parser doesn’t include `def` or return types, and it includes the type hint before the variable name. But the type of `out` in pyi is probably wrong, since `svd` has multiple output params. I tried to clearly call out any instances of the pyi codegen diverging in a way that looks buggy, so we can clean it up in a later PR (see the comments for details).
Another particularly ugly “bug” that I kept in to maintain byte-for-byte compatibility is the fact that the pyi codegen groups operator overloads together. It turns out that the only reason it does this (as far as I can tell) is because is tacks on an out argument to signatures that don’t have one, if ANY overloads of that op have an out variant.
E.g. consider the pyi type hints generated for `nanmedian` in `_VF.pyi`:
```
overload
def nanmedian(input: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
overload
def nanmedian(input: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> namedtuple_values_indices: ...
overload
def nanmedian(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> namedtuple_values_indices: ...
```
And the corresponding native_functions.yaml entries:
```
- func: nanmedian(Tensor self) -> Tensor
- func: nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
- func: nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
- func: nanmedian.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
- func: nanmedian.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!)
```
Signature 2 corresponds to entries 2 and 3 in native_functions, and Signature 3 corresponds to entries 4 and 5. But signature 1 has an optional out argument, even though entry 1 in native_functions.yaml has no out variant.
I’d like to delete that logic in a later PR- that will also have the added benefit no longer requiring to group overloads together in the pyi codegen. We can just operate independently on each PythonSignatureGroup.
**More detailed accounting of the changes**
Per file:
gen_python_functions.py
- `load_signatures()` can now skip deprecated signatures. Needed because pyi only includes deprecated functions, and skips their method variants (maybe we should add them in…?)
- Moved `namedtuple_fieldnames` into python.cpp
- `group_overloads()` can now opt to not sort the overloads (needed for byte-for-byte compact, pyi doesn’t sort for some reason)
Python.py:
- Gave `PythonSignature`and `PythonSignatureDeprecated` a `pyi` flag that tells it whether or not to print itself in pyi vs. python_arg_parser format
- Added a `PythonReturns` dataclass , which is now a member of PythonSignature. It is only used by pyi. I found this useful because python returns need to know how to deal with named tuple returns properly. I also moved `namedtuple_fieldnames` into this file from gen_python_functions
gen_pyi.py
- Merged `get_py_torch_functions` and `get_py_variable_methods` into a single function, since they’re very similar
- Lifted out all of the pyi type hint type-mapping mess and dropped it into python.py. This required updating the mapping to deal with NativeFunction objects instead of the outputs of Declarations.yaml (this was most of the logic in `type_to_python`, `arg_to_type_hint`, and `generate_type_hints`). `generate_type_hints` is now a small orchestration function that gathers the different signatures for each PythonSignatureGroup.
- NamedTuples are now generated by calling `PythonReturn.named_tuple()` (in `generate_named_tuples()`), rather than appending to a global list
A lot of hardcoded pyi signatures still live in `gen_pyi.py`. I didn’t look to closely into whether or not any of that can be removed as part of this PR.
Test Plan: Imported from OSS
Reviewed By: ljk53
Differential Revision: D25343802
Pulled By: bdhirsh
fbshipit-source-id: f73e99e1afef934ff41e4aca3dabf34273459a52
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48249
Introduced autograd related data models at tools.codegen.api.autograd.
Migrated load_derivatives.py to produce the new data models from derivatives.yaml.
It has clean mypy-strict result.
Changed both gen_autograd_functions.py and gen_variable_type.py to consume
the new data model.
Added type annotations to gen_autograd_functions.py - it has clean mypy-strict
result except for the .gen_autograd import (so haven't added it to the strict
config in this PR).
To limit the scope of the PR, gen_variable_type.py is not refactored, and the
main structure of load_derivatives.py / gen_autograd_functions.py is kept. We
only make necessary changes to make it work.
Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
.jenkins/pytorch/codegen-test.sh <baseline_output_dir>
.jenkins/pytorch/codegen-test.sh <test_output_dir>
Then run diff to compare the generated files:
diff -Naur <baseline_output_dir> <test_output_dir>
```
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D25086561
Pulled By: ljk53
fbshipit-source-id: 1f43ab0931d9814c24683b9a48ca497c5fc3d729
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47976
Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
.jenkins/pytorch/codegen-test.sh <baseline_output_dir>
.jenkins/pytorch/codegen-test.sh <test_output_dir>
Then run diff to compare the generated files:
diff -Naur <baseline_output_dir> <test_output_dir>
```
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D24976273
Pulled By: ljk53
fbshipit-source-id: 6f8f20d18db20c3115808bfac0a8b8ad83dcf64c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47746
- Removed the integration hack in gen_python_functions.py. It now directly
loads native_functions.yaml. All dependencies on Declarations.yaml
have been removed / moved to elsewhere.
- Rewrote the deprecated.yaml parsing logic to work with new data model directly.
Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
.jenkins/pytorch/codegen-test.sh <baseline_output_dir>
.jenkins/pytorch/codegen-test.sh <test_output_dir>
Then run diff to compare the generated files:
diff -Naur <baseline_output_dir> <test_output_dir>
```
Differential Revision: D24885067
Test Plan: Imported from OSS
Reviewed By: bhosmer
Pulled By: ljk53
fbshipit-source-id: 8e906b7dd36a64395087bd290f6f54596485ceb4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47745
This is a relatively small codegen. Reintroduced 'simple_type' to preserve
old codegen output.
It depends on some methods defined in gen_python_functions.py - next PR will
clean up the remaining Declarations.yaml methods in gen_python_functions.py.
Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
.jenkins/pytorch/codegen-test.sh <baseline_output_dir>
.jenkins/pytorch/codegen-test.sh <test_output_dir>
Then run diff to compare the generated files:
diff -Naur <baseline_output_dir> <test_output_dir>
```
Differential Revision: D24885068
Test Plan: Imported from OSS
Reviewed By: ezyang
Pulled By: ljk53
fbshipit-source-id: c0fbd726bcc450c3c7fe232c23e5b31779d0b65f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46978
Refactored and added type annotations to the most part of the file.
Some top-level codegen functions are called by other codegen scripts.
Will migrate them in subsequent PRs.
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D24589210
Pulled By: ljk53
fbshipit-source-id: e0c7e5b3672b41983f321400c2e2330d1462e76e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46977
Clean up a few TODOs in the new python binding codegen.
Get rid of the _simple_type() hack and the uses of cpp_type_str.
Now python argument type strings and PythonArgParser unpacking methods
are directly generated from the original Type model.
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D24589209
Pulled By: ljk53
fbshipit-source-id: b2a6c3911d58eae49c031d319c8ea6f804e2cfde
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227
Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.
The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24269435
fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46244
- What does the generated binding code do?
The Python binding codegen produces code that takes the input list of
PyObjects, finds the matching ATen C++ function using PythonArgParser,
converts the PyObjects into C++ types and calls the ATen C++ function:
```
+--------+ parsing +------------------------+ binding +-----------------------+
| PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch |
+--------+ +------------------------+ +-----------------------+
```
- Are Python arguments 1-1 mapped to C++ arguments?
Python arguments might be reordered, packed, unpacked when binding to
C++ arguments, as illustrated below:
```
// Binding - Reorder & Packing
// aten::empty.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None,
Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
Python Args Cpp Args
-----------------------------------------------------------
0: size size
1: names names
2: memory_format -------+
3: dtype -----+-|--> options
4: layout / |
5: device / +--> memory_format
6: pin_memory /
7: requires_grad -+
// Binding - Unpacking
// aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
Python Args Cpp Args
-----------------------------------------------------------
+----> max
/-----> max_values
0: input / self
1: dim / dim
2: keepdim / keepdim
3: out -----+
```
- Why do we want to rewrite the python binding codegen?
The old codegen takes Declarations.yaml as input. It doesn't distinguish
between Python arguments and C++ arguments - they are all mixed together
as a bag of non-typed dict objects. Different methods process these arg
objects and add new attributes for various different purposes. It's not so
obvious to figure out the semantics of these attributes. The complicated
binding logic happens implicitly and scatteredly.
```
+--------------------+
| Native Functions |
+--------------------+
|
|
v
+--------------------+
| Cpp Signatures |
+--------------------+
|
|
v
+--------------------+
| Declarations.yaml |
+--------------------+
| +-------------------------------------+
| +-------> | PythonArgParser Schema |
| | +-------------------------------------+
| | .
| | .
v | .
+--------------------+ +-------------------------------------+
| NonTyped Args Objs | --> | PythonArgParser -> Cpp Args Binding |
+--------------------+ +-------------------------------------+
| .
| .
| .
| +-------------------------------------+
+-------> | Cpp Function Dispatch |
+-------------------------------------+
```
This PR leverages the new immutable data models introduced in the new
aten codegen. It introduces dedicated data models for python schema.
This way, we can not only avoid subtle Declaration.yaml conversions but
also decouple the generation of python schema, python to c++ binding and
c++ function call.
The ultimate state will be like the following diagram:
```
+-------------------+ +-------------------------------------+
+-------> | Python Signatures | --> | PythonArgParser Schema |
| +-------------------+ +-------------------------------------+
| | .
| | .
| | .
+------------------+ | +-------------------------------------+
| Native Functions | +-------> | PythonArgParser -> Cpp Args Binding |
+------------------+ | +-------------------------------------+
| | .
| | .
| | .
| +-------------------+ +-------------------------------------+
+-------> | Cpp Signatures | --> | Cpp Function Dispatch |
+-------------------+ +-------------------------------------+
```
This PR has migrated the core binding logic from
tools/autograd/gen_python_functions.py to tools/codegen/api/python.py.
It produces the byte-for-byte same results (tested with #46243).
Will migrate the rest of gen_python_functions.py in subsequent PRs.
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D24388874
Pulled By: ljk53
fbshipit-source-id: f88b6df4e917cf90d868a2bbae2d5ffb680d1841
Summary:
The record_stream method was hard coded for CUDA device. Define the record_stream in the native_functions.yaml to enable the dynamic dispatch to different end device.
Fixes https://github.com/pytorch/pytorch/issues/36556
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44301
Reviewed By: glaringlee
Differential Revision: D23763954
Pulled By: ezyang
fbshipit-source-id: e6d24f5e7892b56101fa858a6cad2abc5cdc4293
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45665Fixes#43944
Note that the codegen doesn't use a proper parser so, in the same way as with lists, the string `, ` cannot appear in defaults or it will be interpreted as a splitting point between arguments.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D24141835
Pulled By: ezyang
fbshipit-source-id: 578127861fd2504917f4486c44100491a2c40343
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45530
Returning double values requires special handling as a return type for aten functions.
Instead return tensors where the type is preserved in the tensor dtype
Test Plan:
python test/test_quantization.py TestQuantizedTensor.test_choose_qparams_optimized
Imported from OSS
Reviewed By: dskhudia
Differential Revision: D24001134
fbshipit-source-id: bec6b17242f4740ab5674be06e0fc30c35eb0379
Summary:
In this PR:
1) Added binary operations with ScalarLists.
2) Fixed _foreach_div(...) bug in native_functions
3) Covered all possible cases with scalars and scalar lists in tests
4) [minor] fixed bug in native_functions by adding "use_c10_dispatcher: full" to all _foreach functions
tested via unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44743
Reviewed By: bwasti, malfet
Differential Revision: D23753711
Pulled By: izdeby
fbshipit-source-id: bf3e8c54bc07867e8f6e82b5d3d35ff8e99b5a0a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45149
The choose_qparams_optimized calculates the the optimized qparams.
It uses a greedy approach to nudge the min and max and calculate the l2 norm
and tries to minimize the quant error by doing `torch.norm(x-fake_quant(x,s,z))`
Test Plan: Imported from OSS
Reviewed By: raghuramank100
Differential Revision: D23848060
fbshipit-source-id: c6c57c9bb07664c3f1c87dd7664543e09f634aee
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44889
This HACK doesn't seem to be necessary any more - there is no 'real'
type in generated Declarations.yaml file.
Verified by comparing generated code before/after.
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D23761624
Pulled By: ljk53
fbshipit-source-id: de996f04d77eebea3fb9297dd90a8ebeb07647bb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42629
How to approach reviewing this diff:
- The new codegen itself lives in `tools/codegen`. Start with `gen.py`, then read `model.py` and them the `api/` folder. The comments at the top of the files describe what is going on. The CLI interface of the new codegen is similar to the old one, but (1) it is no longer necessary to explicitly specify cwrap inputs (and now we will error if you do so) and (2) the default settings for source and install dir are much better; to the extent that if you run the codegen from the root source directory as just `python -m tools.codegen.gen`, something reasonable will happen.
- The old codegen is (nearly) entirely deleted; every Python file in `aten/src/ATen` was deleted except for `common_with_cwrap.py`, which now permanently finds its home in `tools/shared/cwrap_common.py` (previously cmake copied the file there), and `code_template.py`, which now lives in `tools/codegen/code_template.py`. We remove the copying logic for `common_with_cwrap.py`.
- All of the inputs to the old codegen are deleted.
- Build rules now have to be adjusted to not refer to files that no longer exist, and to abide by the (slightly modified) CLI.
- LegacyTHFunctions files have been generated and checked in. We expect these to be deleted as these final functions get ported to ATen. The deletion process is straightforward; just delete the functions of the ones you are porting. There are 39 more functions left to port.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D23183978
Pulled By: ezyang
fbshipit-source-id: 6073ba432ad182c7284a97147b05f0574a02f763
Summary:
Add a max/min operator that only return values.
## Some important decision to discuss
| **Question** | **Current State** |
|---------------------------------------|-------------------|
| Expose torch.max_values to python? | No |
| Remove max_values and only keep amax? | Yes |
| Should amax support named tensors? | Not in this PR |
## Numpy compatibility
Reference: https://numpy.org/doc/stable/reference/generated/numpy.amax.html
| Parameter | PyTorch Behavior |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| `axis`: None or int or tuple of ints, optional. Axis or axes along which to operate. By default, flattened input is used. If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes as before. | Named `dim`, behavior same as `torch.sum` (https://github.com/pytorch/pytorch/issues/29137) |
| `out`: ndarray, optional. Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. | Same |
| `keepdims`: bool, optional. If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. | implemented as `keepdim` |
| `initial`: scalar, optional. The minimum value of an output element. Must be present to allow computation on empty slice. | Not implemented in this PR. Better to implement for all reductions in the future. |
| `where`: array_like of bool, optional. Elements to compare for the maximum. | Not implemented in this PR. Better to implement for all reductions in the future. |
**Note from numpy:**
> NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well. To ignore NaN values (MATLAB behavior), please use nanmax.
PyTorch has the same behavior
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43092
Reviewed By: ngimel
Differential Revision: D23360705
Pulled By: mruberry
fbshipit-source-id: 5bdeb08a2465836764a5a6fc1a6cc370ae1ec09d
Summary:
This PR adds the `torch.linalg` namespace as part of our continued effort to be more compatible with NumPy. The namespace is tested by adding a single function, `torch.linalg.outer`, and testing it in a new test suite, test_linalg.py. It follows the same pattern that https://github.com/pytorch/pytorch/pull/41911, which added the `torch.fft` namespace, did.
Future PRs will likely:
- add more functions to torch.linalg
- expand the testing done in test_linalg.py, including legacy functions, like torch.ger
- deprecate existing linalg functions outside of `torch.linalg` in preference to the new namespace
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42664
Reviewed By: ngimel
Differential Revision: D22991019
Pulled By: mruberry
fbshipit-source-id: 39258d9b116a916817b3588f160b141f956e5d0b
Summary:
This PR creates a new namespace, torch.fft (torch::fft) and puts a single function, fft, in it. This function is analogous to is a simplified version of NumPy's [numpy.fft.fft](https://numpy.org/doc/1.18/reference/generated/numpy.fft.fft.html?highlight=fft#numpy.fft.fft) that accepts no optional arguments. It is intended to demonstrate how to add and document functions in the namespace, and is not intended to deprecate the existing torch.fft function.
Adding this namespace was complicated by the existence of the torch.fft function in Python. Creating a torch.fft Python module makes this name ambiguous: does it refer to a function or module? If the JIT didn't exist, a solution to this problem would have been to make torch.fft refer to a callable class that mimicked both the function and module. The JIT, however, cannot understand this pattern. As a workaround it's required to explicitly `import torch.fft` to access the torch.fft.fft function in Python:
```
import torch.fft
t = torch.randn(128, dtype=torch.cdouble)
torch.fft.fft(t)
```
See https://github.com/pytorch/pytorch/issues/42175 for future work. Another possible future PR is to get the JIT to understand torch.fft as a callable class so it need not be imported explicitly to be used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41911
Reviewed By: glaringlee
Differential Revision: D22941894
Pulled By: mruberry
fbshipit-source-id: c8e0b44cbe90d21e998ca3832cf3a533f28dbe8d
Summary:
According to pytorch/rfcs#3
From the goals in the RFC:
1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
(so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)
This PR makes the following changes:
1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.
TODO:
- [x] Sequence Methods
- [x] Docs
- [x] Tests
Closes https://github.com/pytorch/pytorch/issues/28361
Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091
Reviewed By: ngimel
Differential Revision: D22765678
Pulled By: ezyang
fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41947
Previously, if an op took an optional `Tensor?` argument, the C++ frontend (i.e. `at::op()` and `Tensor::op()`)
were generated to take `Tensor`. A previous PR (https://github.com/pytorch/pytorch/pull/41610) changed the kernels
to be written with `c10::optional<Tensor>` instead of `Tensor`, but that did not touch the C++ frontend yet.
This PR changes the C++ frontend API to take `c10::optional<Tensor>` instead of `Tensor` as well.
This should be mostly bc conserving. Since `Tensor` implicitly converts to `c10::optional<Tensor>`, any old code
calling an op with a `Tensor` would still work. There are likely corner cases that get broken though.
For example, C++ only ever does *one* implicit conversion. So if you call an op with a non-tensor object
that gets implicitly converted to a `Tensor`, then that previously worked since the API took a `Tensor` and
C++ allows one implicit conversion. Now it wouldn't work anymore because it would require two implicit conversions
(to `Tensor` and then to `c10::optional<Tensor>`) and C++ doesn't do that.
The main reasons for doing this are
- Make the C++ API more sane. Those arguments are optional and that should be visible from the signature.
- Allow easier integration for XLA and Autocast. Those backends generate code to wrap operators and forward
operator arguments to calls to at::op(). After https://github.com/pytorch/pytorch/pull/41610, there was
a mismatch because they had to implement operators with `optional<Tensor>` but call `at::op()` with `Tensor`,
so they had to manually convert between those. After this PR, they can just forward the `optional<Tensor>`
in their call to `at::op()`.
ghstack-source-id: 108873705
Test Plan: unit tests
Reviewed By: bhosmer
Differential Revision: D22704832
fbshipit-source-id: f4c00d457b178fbc124be9e884a538a3653aae1f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37175
ghstack-source-id: 106938114
Test Plan: Upcoming diffs use this for upsampling.
Differential Revision: D21209994
fbshipit-source-id: 1a71c07e45e28772a2bbe450b68280dcc0fe2def
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37174
ghstack-source-id: 106938112
Test Plan: Upcoming diffs use this for upsampling.
Differential Revision: D21210002
fbshipit-source-id: d6a55ab6420c05a92873a569221b613149aa0daa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38136
This was a bit trickier than I expected, because modules have
to be importable to be pickleable, but adding a module to another
module in the C API isn't really the right way to make it importable.
We hack around it by manually adding the module to sys.modules.
Thanks Richard Zou for an extremely useful prior attempt which helped
me make this work.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21487840
Pulled By: ezyang
fbshipit-source-id: 368da9b9c50e5de4d7dd265e6f9f189a882d75c1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36232
The purpose of this PR is to replace `at::Generator generator = nullptr` with `c10::optional<at::Generator> = c10::nullopt` all over the code
* #36230 Replace std::shared_ptr with c10::intrusive_ptr in at::Generator
Test Plan: Imported from OSS
Differential Revision: D20943603
Pulled By: pbelevich
fbshipit-source-id: 65d335990f01fcc706867d5344e73793fad68ae6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35235
For dynamic quantization in graph mode, we need an operator that returns the qparams of the tensor
similar to the linear_dynamic quantized op
Test Plan:
python test/test_quantized_tensor.py TestQuantizedTensor.test_choose_qparams
Imported from OSS
Differential Revision: D20608793
fbshipit-source-id: b923b2620421b32d05f4097db0d6153d53198221
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34468
This PR prepares `at::Generator` for pybind11's `type_caster<at::Generator>` which is required to implement custom RNG in python. The following changes are done:
1. `at::Generator` was moved to `c10::GeneratorImpl` (similar to `c10::TensorImpl`)
2. `at::Generator` was recreated as a holder of `std::shared_ptr<c10::GeneratorImpl>` (similar to `at::Tensor` that holds `c10::intrusive_ptr<c10::TensorImpl>`)
3. Most of `at::Generator*` usages were replaced with `at::Generator`
TBD: replacing `Generator generator = nullptr` with `{}` requires JIT changes(adding Generator to IValue?)
Differential Revision: D20549420
Pulled By: pbelevich
fbshipit-source-id: 4c92a40eab8f033b359bb6c93f4cd84b07ee8d4e
Summary:
Per title.
Currently torch.full will always (attempt to) produce a float tensor. This is inconsistent with NumPy in (at least) two cases:
- When integral fill values (including bool) are given
- When complex fill values are given
For example:
```
np.full((1, 2), 1).dtype
: dtype('int64')
np.full((1, 2), (1 + 1j)).dtype
: dtype('complex128')
```
Whereas in PyTorch
```
torch.full((1, 2), 1).dtype
: torch.float32
torch.full((1, 2), (1 + 1j)).dtype
: RuntimeError: value cannot be converted to type float without overflow: (1,1)
```
This PR begins the process of deprecating our current behavior of returning float tensors (by default) when given integer fill values by warning the user that integer fill values will require explicitly specifying the dtype or out kwargs in 1.6, and in 1.7 the behavior will change to return a LongTensor by default (BoolTensor for bool values). The intermediate 1.6 release is to prevent changing the behavior silently and unexpectedly.
The PR also implements inference for complex types. So that with it:
```
torch.full((1, 2), (1 + 1j)).dtype
: torch.complex64
```
The complex type inference returns a ComplexFloat tensor when given a complex fill value (and no dtype or out kwarg is specified), unless the default dtype is Double, in which case a ComplexDouble tensor is returned.
A test for these behaviors is added to test_torch.py.
Implementation note:
This PR required customizing full's dispatch because currently in eager codegen the TensorOptions object passed to functions improperly sets has_dtype() to true, even if the user did not explicitly provide a dtype. torch.arange already worked around this issue with its own custom implementation. The JIT, however, does pass a properly constructed TensorOptions object.
Future Work:
This PR does not extend torch.full's complex type inference to ONNX. This seems unlikely to come up and will be a clear error if it does. When integer type inference is added to torch.full, however, then porting the behavior to ONNX may be warranted. torch.arange ported its complex type promotion logic to ONNX, for example.
Additionally, this PR mostly leaves existing call sites in PyTorch that would trigger this warning intact. This is to be more minimal (since the PR is BC breaking). I will submit a separate PR fixing PyTorch's call sites.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34709
Differential Revision: D20509387
Pulled By: mruberry
fbshipit-source-id: 129593ba06a1662032bbbf8056975eaa59baf933