pytorch/tools/autograd/gen_python_functions.py
Sebastian Messmer 26974e6b28 Remove set_quantizer_ from native_functions.yaml (#49463)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49463

set_quantizer_ takes a ConstQuantizerPtr argument, which is neither supported by JIT nor by c10.
Also, it doesn't get dispatched (CPU and CUDA have the same implementation) and it is excluded from python bindings generation.
So there is no real reason why this needs to be in native_functions.yaml

Removing it unblocks the migration to c10-fullness since this is an op that would have been hard to migrate. See https://fb.quip.com/QRtJAin66lPN
ghstack-source-id: 118710663

Test Plan: waitforsandcastle

Reviewed By: ezyang

Differential Revision: D25587763

fbshipit-source-id: 8fab921f4c256c128d48d82dac731f04ec9bad92
2020-12-17 03:28:00 -08:00

853 lines
32 KiB
Python

# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, or torch._C._linalg objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
from collections import defaultdict
import itertools
import re
import yaml
from .gen_trace_type import should_trace
from tools.codegen.code_template import CodeTemplate
from tools.codegen.api.types import *
from tools.codegen.api.python import *
from tools.codegen.gen import cpp_string, parse_native_yaml, with_native_function, FileManager
from tools.codegen.model import *
from tools.codegen.utils import *
from typing import Dict, Optional, List, Tuple, Set, Sequence, Callable
try:
# use faster C loader if available
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader # type: ignore
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
SKIP_PYTHON_BINDINGS = [
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'size', 'stride',
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
'_arange.*', '_range.*', '_linspace.*', '_logspace.*',
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
'index', 'unique_dim_consecutive',
'_indexCopy_', '_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
'_th_.*', '_thnn_.*',
'arange.*', 'range.*', '_solve.*', '_inverse.*',
'full(_out)?',
'_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
'slice', 'randint(_out)?',
'item', '_local_scalar_dense', 'to',
'copy_sparse_to_sparse_', 'copy_',
'numpy_T', # this needs to be an attribute in Python, not a function
'nonzero(_(out|numpy))?',
'set_data',
'.*_overrideable', # overrideable functions for backend extension
'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retain_grad', 'set_'
]
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
'add(Tensor, Scalar, Scalar)', 'add_(Tensor, Scalar, Scalar)',
'sub(Tensor, Scalar, Scalar)', 'sub_(Tensor, Scalar, Scalar)',
'mul(Tensor, Scalar)', 'mul_(Tensor, Scalar)',
'div(Tensor, Scalar)', 'div_(Tensor, Scalar)',
]
@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
name = cpp.name(f.func)
for pattern in SKIP_PYTHON_BINDINGS:
if re.match('^' + pattern + '$', name):
return False
args = ', '.join(argument_type_str(arg.type)
for arg in signature(f).arguments())
sig = f'{name}({args})'
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == sig:
return False
return True
def get_pycname(name: BaseOperatorName) -> str:
return f'THPVariable_{name}'
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
def is_py_variable_method(f: NativeFunction) -> bool:
return f.python_module is None and Variant.method in f.variants
def is_py_torch_function(f: NativeFunction) -> bool:
return f.python_module is None and Variant.function in f.variants
def is_py_nn_function(f: NativeFunction) -> bool:
return f.python_module == 'nn'
def is_py_fft_function(f: NativeFunction) -> bool:
return f.python_module == 'fft'
def is_py_linalg_function(f: NativeFunction) -> bool:
return f.python_module == 'linalg'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def gen(out: str, native_yaml_path: str, deprecated_yaml_path: str, template_path: str) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
methods = load_signatures(native_yaml_path, deprecated_yaml_path, method=True)
create_python_bindings(
fm, methods, is_py_variable_method, None, 'python_variable_methods.cpp', method=True)
functions = load_signatures(native_yaml_path, deprecated_yaml_path, method=False)
create_python_bindings(
fm, functions, is_py_torch_function, 'torch', 'python_torch_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_nn_function, 'torch.nn', 'python_nn_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_fft_function, 'torch.fft', 'python_fft_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_linalg_function, 'torch.linalg', 'python_linalg_functions.cpp', method=False)
def create_python_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
) -> None:
"""Generates Python bindings to ATen functions"""
py_methods: List[str] = []
py_method_defs: List[str] = []
py_forwards: List[str] = []
grouped: Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
if pred(pair.function):
grouped[pair.function.func.name.name].append(pair)
for name in sorted(grouped.keys(), key=lambda x: str(x)):
overloads = grouped[name]
py_methods.append(method_impl(name, module, overloads, method=method))
py_method_defs.append(method_def(name, module, overloads, method=method))
py_forwards.extend(forward_decls(name, overloads, method=method))
fm.write_with_template(filename, filename, lambda: {
'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
'py_forwards': py_forwards,
'py_methods': py_methods,
'py_method_defs': py_method_defs,
})
def load_signatures(
native_yaml_path: str,
deprecated_yaml_path: str,
*,
method: bool,
skip_deprecated: bool = False,
pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
native_functions = list(filter(should_generate_py_binding, parse_native_yaml(native_yaml_path)))
@with_native_function
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
return PythonSignatureNativeFunctionPair(
signature=signature(f, method=method, pyi=pyi),
function=f,
)
pairs = list(map(gen_signature_pairs, native_functions))
deprecated = load_deprecated_signatures(pairs, deprecated_yaml_path, method=method, pyi=pyi)
return pairs if skip_deprecated else pairs + deprecated
def load_deprecated_signatures(
pairs: Sequence[PythonSignatureNativeFunctionPair],
deprecated_yaml_path: str,
*,
method: bool,
pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
# The deprecated.yaml doesn't have complete type information, we need
# find and leverage the original ATen signature (to which it delegates
# the call) to generate the full python signature.
# We join the deprecated and the original signatures using type-only form.
# native function -> type-only signature
@with_native_function
def signature_original(f: NativeFunction) -> str:
# remove inplace suffix but keep outplace suffix
opname = str(f.func.name.name.base)
if f.func.is_out_fn():
opname += '_out'
if f.func.name.name.inplace and pyi:
opname += '_'
args = CppSignatureGroup.from_schema(f.func, method=False).signature.arguments()
# Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
types = ', '.join(argument_type_str(a.argument.type)
for a in args if isinstance(a.argument, Argument))
return f'{opname}({types})'
# deprecated -> type-only native signature (according to the call order)
def signature_deprecated(opname: str, params: List[str], call_args: List[str]) -> str:
# create a mapping of parameter name to parameter type
types: Dict[str, str] = {}
for param in params:
if param == '*':
continue
type, name = param.split(' ')
types[name] = type
# if the name in the call is not in the parameter list, assume it's
# a literal Scalar
rearranged_types = ', '.join(types.get(arg, 'Scalar') for arg in call_args)
return f'{opname}({rearranged_types})'
# group the original ATen signatures by type-only signature
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
grouped[signature_original(pair.function)].append(pair)
# find matching original signatures for each deprecated signature
results: List[PythonSignatureNativeFunctionPair] = []
with open(deprecated_yaml_path, 'r') as f:
deprecated_defs = yaml.load(f, Loader=Loader)
for deprecated in deprecated_defs:
_, params = split_name_params(deprecated['name'])
aten_name, call_args = split_name_params(deprecated['aten'])
for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
# It uses the types from the original ATen declaration, but the
# ordering and parameter names from the deprecated overload. Any
# default parameter values from the original ATen declaration are
# ignored.
# Deprecated signature might reorder input_args and input_kwargs,
# but never changes output_args nor TensorOptions (if any?),
# so here we only look into these two types of args.
python_sig = pair.signature
src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
name=a.name,
type=a.type,
default=None,
default_init=None,
) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
args: List[str] = []
input_args: List[PythonArgument] = []
input_kwargs: List[PythonArgument] = []
kwarg_only = False
for param in params:
if param == '*':
kwarg_only = True
continue
_, param_name = param.split(' ')
args.append(param_name)
if param_name not in src_args:
# output argument
continue
if not kwarg_only:
if not method or param_name != 'self':
input_args.append(src_args[param_name])
else:
input_kwargs.append(src_args[param_name])
results.append(PythonSignatureNativeFunctionPair(
signature=PythonSignatureDeprecated(
name=python_sig.name,
input_args=tuple(input_args),
input_kwargs=tuple(input_kwargs),
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_args_names=tuple(args),
deprecated_args_exprs=tuple(call_args),
returns=python_sig.returns,
),
function=pair.function,
))
return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@with_native_function
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
name = cpp.name(f.func)
fieldnames = namedtuple_fieldnames(f.func.returns)
return '_'.join([name] + fieldnames)
def emit_namedtuple_typedefs(
overloads: Sequence[PythonSignatureNativeFunctionPair]
) -> Tuple[List[str], Dict[str, str]]:
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
flddefnames: Dict[str, str] = {} # map from unique field name lists to field def name
flddefs: List[str] = [] # field def declarations
typenames: Dict[str, str] = {} # map from unique name + field name lists to typedef name
typedefs: List[str] = [] # typedef declarations and init code
for overload in overloads:
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
fn_key = '_'.join(fieldnames)
fieldsname = flddefnames.get(fn_key)
if fieldsname is None:
fieldsname = f'NamedTuple_fields{"" if not flddefs else len(flddefs)}'
flddefnames[fn_key] = fieldsname
fields = ', '.join(f'{{"{fn}", ""}}' for fn in fieldnames)
flddefs.append(f"""\
static PyStructSequence_Field {fieldsname}[] = {{ {fields}, {{nullptr}} }};
""")
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_namedtuple_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
typenames[tn_key] = typename
typedefs.append(f"""\
static PyTypeObject {typename};
static bool {typename}_initialized = false;
if (!{typename}_initialized) {{
{typename}_initialized = true;
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, {fieldsname}, {len(fieldnames)} }};
PyStructSequence_InitType(&{typename}, &desc);
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
}}
""")
return flddefs + typedefs, typenames
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
""")
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate("""\
case ${overload_index}: {
${body}
}
""")
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
def method_impl(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
noarg = is_noarg(overloads)
namedtuple_inits, namedtuple_typenames = emit_namedtuple_typedefs(overloads)
method_header = ['HANDLE_TH_ERRORS']
method_header += namedtuple_inits
method_header += [
"Tensor& self = reinterpret_cast<THPVariable*>(self_)->cdata;"
] if method else []
method_footer = ([] if noarg else ['Py_RETURN_NONE;']) + ['END_HANDLE_TH_ERRORS']
traceable = 'true' if all(should_trace(o.function) for o in overloads) else 'false'
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
is_singleton = len(grouped_overloads) == 1
signatures: List[str] = []
dispatch: List[str] = []
for overload_index, overload in enumerate(grouped_overloads):
signature = overload.signature.signature_str()
signatures.append(f'{cpp_string(str(signature))},')
dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
dispatch.append(
PY_VARIABLE_CASE.substitute(overload_index=overload_index, body=dispatch_body)
if not is_singleton else dispatch_body)
if noarg:
template = PY_VARIABLE_METHOD_NOARGS
elif is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
signatures=signatures,
traceable=traceable,
check_has_torch_function=gen_has_torch_function_check(
name=name,
module=module,
noarg=noarg,
method=method,
),
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if method else "nullptr",
)
def gen_has_torch_function_check(
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
if noarg:
if method:
return f"""\
if(check_has_torch_function(self_)) {{
return handle_torch_function(self_, "{name}");
}}
"""
else:
return ''
self_ = "self_" if method else "nullptr"
namespace = {
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
}[module] if module else "THPVariableClass"
return f"""\
if(_r.has_torch_function()) {{
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""
# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate("""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
""")
def emit_dispatch_case(
overload: PythonSignatureGroup,
namedtuple_typenames: Dict[str, str],
) -> str:
"""
Emit dispatch code for a single parsed signature. This corresponds to either
a single native function, or a pair that differ only in output params. In the
latter case, a single python signature is used for both and dispatching
switches on the presence/absence of passed output args.
"""
if overload.outplace is not None:
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
return PY_VARIABLE_OUT.substitute(
out_idx=overload.signature.output_idx(),
call_dispatch=emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames),
call_dispatch_out=emit_single_dispatch(
overload.signature, overload.outplace, namedtuple_typenames),
)
else:
# no-output version only
return emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Forward Declarations Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def forward_decls(
name: BaseOperatorName,
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> Tuple[str, ...]:
if method:
return ()
pycname = get_pycname(name)
if is_noarg(overloads):
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args);
""",)
else:
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""",)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Def (Binding Table Entry) Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def method_def(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate method def entry.
"""
pycname = get_pycname(name)
if is_noarg(overloads):
pyfunc_cast = ''
flags = 'METH_NOARGS' if method else 'METH_VARARGS | METH_KEYWORDS'
else:
pyfunc_cast = 'castPyCFunctionWithKeywords'
flags = 'METH_VARARGS | METH_KEYWORDS'
if module == "torch":
flags += ' | METH_STATIC'
if name.dunder_method:
# PyMethodDef entry for binary op, throws not implemented error
return f"""\
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
else:
# PyMethodDef entry
return f"""\
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Overload Sorting and Grouping
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def group_overloads(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Sequence[PythonSignatureGroup]:
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
# first group by signature ignoring out arguments
for overload in overloads:
sig = overload.signature.signature_str(skip_outputs=True)
if overload.function.func.is_out_fn():
if sig in outplaces:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {outplaces[sig].function.func}.'
)
outplaces[sig] = overload
else:
if sig in bases:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {bases[sig].function.func}.'
)
bases[sig] = overload
for sig, out in outplaces.items():
if sig not in bases:
candidates: List[str] = []
for overload in overloads:
if str(overload.function.func.name.name) == str(out.function.func.name.name) \
and not overload.function.func.is_out_fn() \
and not overload.signature.deprecated:
candidates.append(overload.signature.signature_str(skip_outputs=True))
out_sig = out.signature.signature_str()
raise RuntimeError(
f'While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. '
f'We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema '
'correctly in native_functions.yaml. We discovered the following candidate(s): \n'
+ '\n'.join(f'- {candidate}' for candidate in candidates))
grouped: List[PythonSignatureGroup] = []
for sig, base in bases.items():
outplace = outplaces.get(sig)
grouped.append(PythonSignatureGroup(
# prefer the signature with optional out=... arguments because it's the
# superset that can be used to parse input for both base and outplace.
signature=outplace.signature if outplace is not None else base.signature,
base=base.function,
outplace=outplace.function if outplace is not None else None,
))
return sort_overloads(grouped)
# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
#
# A few examples of ambiguous python signature pairs.
#
# All parameters have the same type, except one taking Tensor the other taking
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
# Therefore, same input arguments might be accepted by either python signature.
# We want to always parse the one taking Tensor first.
#
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
#
# If they have different number of parameters then they are not ambiguous - but
# the difference on output param can be ignored as it's optional.
#
# multiply(Tensor input, Tensor other, *, Tensor out=None)
# multiply(Tensor input, Scalar other)
#
# Both positional args and keyword-only args are considered together.
#
# subtract(Tensor other, *, Scalar alpha=1)
# subtract(Scalar other, Scalar alpha=1)
#
# A few ambiguous cases which it does NOT handle yet.
#
# If there is any difference in other parameters besides the Tensor/Scalar
# difference, then they are not considered ambiguous by this method anymore.
# However, the difference could be too trivial to disambiguate.
#
# foo(Tensor input, Scalar other, Scalar bar)
# foo(Tensor input, Tensor other, double bar)
#
# If they are taking different number of parameters then they are not considered
# ambiguous anymore, even if the difference is only on optional kwargs.
#
# foo(Scalar other, Scalar alpha=1)
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
#
def sort_overloads(
grouped_overloads: Sequence[PythonSignatureGroup]
) -> Sequence[PythonSignatureGroup]:
def is_arg_smaller(t1: Type, t2: Type) -> bool:
return str(t1) == 'Scalar' and str(t2) == 'Tensor'
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
"""Returns True if s1 < s2 in the partial order."""
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
if len(args1) != len(args2):
return False
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
smaller_or_equal = all(str(arg1.type) == str(arg2.type)
or is_arg_smaller(arg1.type, arg2.type)
for arg1, arg2 in zip(args1, args2))
return smaller_or_equal and not equal
# First sort by signature
grouped_overloads = sorted(grouped_overloads, key=lambda x: x.signature.signature_str())
# Construct the relation graph
larger_than: Dict[int, Set[int]] = defaultdict(set)
for i1, overload1 in enumerate(grouped_overloads):
for i2, overload2 in enumerate(grouped_overloads):
if is_smaller(overload1.signature, overload2.signature):
larger_than[i1].add(i2)
if not larger_than:
return list(grouped_overloads)
# Use a topological sort to sort overloads according to the partial order.
N = len(grouped_overloads)
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
for idx in range(N):
# The size of sorted_ids will grow to N eventually.
i = sorted_ids[idx]
for j in sorted(larger_than.keys()):
larger = larger_than[j]
larger.discard(i)
if not larger:
del larger_than[j]
sorted_ids.append(j)
return list(map(lambda x: grouped_overloads[x], sorted_ids))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def emit_single_dispatch(
ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
) -> str:
"""
Emit dispatch code for a single native function.
"""
@with_native_function
def go(f: NativeFunction) -> str:
# header comments
deprecated = '[deprecated] ' if ps.deprecated else ''
schema_comment = f'// {deprecated}aten::{f.func}'
# dispatch lambda signature
name = cpp.name(f.func)
lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
dispatch_lambda_args(ps, f)))
lambda_return = dispatch_lambda_return_str(f)
# dispatch lambda body
dispatch_callee = cpp_dispatch_target(f)
dispatch_args = ', '.join(cpp_dispatch_exprs(f, python_signature=ps))
# from arg parser outputs to dispatch lambda arguments
parser_outputs = arg_parser_output_exprs(ps, f)
lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
inits = '\n'.join(lambda_arg_exprs.inits)
lambda_args = ', '.join(lambda_arg_exprs.exprs)
# scatter fields
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
# solution for enabling the 'requires_grad' argument for tensor methods
# new_full, new_empty, and new_zeros. A much better but more difficult to
# implement solution involves refactoring according to Ed's description here:
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
ps.method and ('requires_grad' in parser_outputs)))
set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
if need_set_requires_grad else ''
if lambda_return == 'void':
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
{dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
else:
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
namedtuple_typeref = f'&{typename}, ' if typename is not None else ''
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
return {dispatch_callee}({dispatch_args});
}};
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""
return go(f)