pytorch/tools/autograd/gen_python_functions.py
Brian Hirsh ba6511b304 pyi codegen update - remove Declarations.yaml (#48754)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48754

The goal of this PR is to kill Declarations.yaml in the pyi codegen, in favor of native_functions + the existing python object model.

**High-level design**

Since the python signatures used by the `python_arg_parser` are “supposed” to resemble the corresponding pyi type hint signatures, I re-used the existing python object model that Jiakai defined in `tools/codegen/api/python.py`. This means that the pyi codegen now reads `native_functions.yaml`, parses it into a bunch of `PythonSignatureGroup` objects, and emits corresponding method + function variants of type-hint signatures for each one, respectively into `__init__.pyi` and `_VariableFunctions.pyi`.

What makes this uglier is that pyi and the python arg parser have a number of differences in how they’re emitted. I expressed that through a `pyi` flag on the `PythonSignature` dataclass, that tells it whether or not to print itself as a pyi vs. arg_parser signature.

One thing worth noting is how pyi generates signatures differently for native / deprecated op signatures.

For native ops:
- The pyi codegen fuses functional and out variants of each op into a single signature with an optional `out` argument. Ops without an `out` variant just get an ordinary functional signature.
- Some ops that fit certain criteria also get a second “varargs” signature - basically ops with a single positional argument of type List[int].

For deprecated signatures:
- Functional and out variants are not fused - they each get their own signature entry
- There are no varargs signatures

This is currently implemented through the `signature_str()` and `signature_str_vararg()` methods on the `PythonSignature`/`PythonSignatureDeprecated` classes.  `signature_str()` knows how to print itself with/without out arguments, differently for native/deprecated ops. `signature_str_vararg()` optionally returns a vararg variant of the signature if one exists.

**Calling out the gap between python_arg_parser vs. pyi**

The two formats are notably different, so I don’t think we can expect to unify them completely. That said, I encountered a number of differences in the pyi codegen that looked wrong- I tried to call them out in the PR, to be removed later. Just as an example, looking at the `svd` signature in the python_arg_parser vs. the pyi type hint:

python_arg_parser
```
Static PythonArgParser parser({
  “svd(Tensor input, bool some=True, bool compute_uv=True, *, TensorList[3] out=None”,
}, /*traceable=*/true);
```

Pyi
```
def svd(input: Tensor, some: _bool=True, compute_uv: _bool=True, *, out: Optional[Tensor]=None) -> namedtuple_U_S_V: …
```

The two have obvious syntactic differences that we probably don’t plan on changing: the python_arg_parser doesn’t include `def` or return types, and it includes the type hint before the variable name. But the type of `out` in pyi is probably wrong, since `svd` has multiple output params. I tried to clearly call out any instances of the pyi codegen diverging in a way that looks buggy, so we can clean it up in a later PR (see the comments for details).

Another particularly ugly “bug” that I kept in to maintain byte-for-byte compatibility is the fact that the pyi codegen groups operator overloads together. It turns out that the only reason it does this (as far as I can tell) is because is tacks on an out argument to signatures that don’t have one, if ANY overloads of that op have an out variant.

E.g. consider the pyi type hints generated for `nanmedian` in `_VF.pyi`:
```
overload
def nanmedian(input: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
overload
def nanmedian(input: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> namedtuple_values_indices: ...
overload
def nanmedian(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> namedtuple_values_indices: ...
```

And the corresponding native_functions.yaml entries:
```
- func: nanmedian(Tensor self) -> Tensor
- func: nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
- func: nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
- func: nanmedian.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
- func: nanmedian.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!)
```

Signature 2 corresponds to entries 2 and 3 in native_functions, and Signature 3 corresponds to entries 4 and 5. But signature 1 has an optional out argument, even though entry 1 in native_functions.yaml has no out variant.

I’d like to delete that logic in a later PR- that will also have the added benefit no longer requiring to group overloads together in the pyi codegen. We can just operate independently on each PythonSignatureGroup.

**More detailed accounting of the changes**

Per file:

gen_python_functions.py
- `load_signatures()` can now skip deprecated signatures. Needed because pyi only includes deprecated functions, and skips their method variants (maybe we should add them in…?)
- Moved `namedtuple_fieldnames` into python.cpp
- `group_overloads()` can now opt to not sort the overloads (needed for byte-for-byte compact, pyi doesn’t sort for some reason)

Python.py:
- Gave `PythonSignature`and `PythonSignatureDeprecated` a `pyi` flag that tells it whether or not to print itself in pyi vs. python_arg_parser format
- Added a `PythonReturns` dataclass , which is now a member of PythonSignature. It is only used by pyi. I found this useful because python returns need to know how to deal with named tuple returns properly. I also moved `namedtuple_fieldnames` into this file from gen_python_functions

gen_pyi.py
- Merged `get_py_torch_functions` and `get_py_variable_methods` into a single function, since they’re very similar
- Lifted out all of the pyi type hint type-mapping mess and dropped it into python.py. This required updating the mapping to deal with NativeFunction objects instead of the outputs of Declarations.yaml (this was most of the logic in `type_to_python`, `arg_to_type_hint`, and `generate_type_hints`).  `generate_type_hints` is now a small orchestration function that gathers the different signatures for each PythonSignatureGroup.
- NamedTuples are now generated by calling `PythonReturn.named_tuple()` (in `generate_named_tuples()`), rather than appending to a global list

A lot of hardcoded pyi signatures still live in `gen_pyi.py`. I didn’t look to closely into whether or not any of that can be removed as part of this PR.

Test Plan: Imported from OSS

Reviewed By: ljk53

Differential Revision: D25343802

Pulled By: bdhirsh

fbshipit-source-id: f73e99e1afef934ff41e4aca3dabf34273459a52
2020-12-07 10:39:38 -08:00

860 lines
32 KiB
Python

# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, or torch._C._linalg objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
from collections import defaultdict
import itertools
import re
import yaml
from .gen_trace_type import should_trace
from tools.codegen.code_template import CodeTemplate
from tools.codegen.api.types import *
from tools.codegen.api.python import *
from tools.codegen.gen import cpp_string, parse_native_yaml, with_native_function, FileManager
from tools.codegen.model import *
from tools.codegen.utils import *
from typing import Dict, Optional, List, Tuple, Set, Sequence, Callable
try:
# use faster C loader if available
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader # type: ignore
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
SKIP_PYTHON_BINDINGS = [
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'size', 'stride',
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
'_arange.*', '_range.*', '_linspace.*', '_logspace.*',
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
'index', 'unique_dim_consecutive',
'_indexCopy_', '_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
'_th_.*', '_thnn_.*',
'arange.*', 'range.*', '_solve.*', '_inverse.*',
'full(_out)?',
'_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
'slice', 'randint(_out)?',
'item', '_local_scalar_dense', 'to',
'copy_sparse_to_sparse_', 'copy_',
'numpy_T', # this needs to be an attribute in Python, not a function
'nonzero(_(out|numpy))?',
'set_quantizer_', # return types not supported yet
'set_data',
'.*_overrideable', # overrideable functions for backend extension
'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retain_grad', 'set_'
]
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
'add(Tensor, Scalar, Scalar)', 'add_(Tensor, Scalar, Scalar)',
'sub(Tensor, Scalar, Scalar)', 'sub_(Tensor, Scalar, Scalar)',
'mul(Tensor, Scalar)', 'mul_(Tensor, Scalar)',
'div(Tensor, Scalar)', 'div_(Tensor, Scalar)',
]
@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
name = cpp.name(f.func)
for pattern in SKIP_PYTHON_BINDINGS:
if re.match('^' + pattern + '$', name):
return False
args = ', '.join(argument_type_str(arg.type)
for arg in signature(f).arguments())
sig = f'{name}({args})'
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == sig:
return False
return True
def get_pycname(name: BaseOperatorName) -> str:
return f'THPVariable_{name}'
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
def is_py_variable_method(f: NativeFunction) -> bool:
return f.python_module is None and Variant.method in f.variants
def is_py_torch_function(f: NativeFunction) -> bool:
return f.python_module is None and Variant.function in f.variants
def is_py_nn_function(f: NativeFunction) -> bool:
return f.python_module == 'nn'
def is_py_fft_function(f: NativeFunction) -> bool:
return f.python_module == 'fft'
def is_py_linalg_function(f: NativeFunction) -> bool:
return f.python_module == 'linalg'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def gen(out: str, native_yaml_path: str, deprecated_yaml_path: str, template_path: str) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
methods = load_signatures(native_yaml_path, deprecated_yaml_path, method=True)
create_python_bindings(
fm, methods, is_py_variable_method, None, 'python_variable_methods.cpp', method=True)
functions = load_signatures(native_yaml_path, deprecated_yaml_path, method=False)
create_python_bindings(
fm, functions, is_py_torch_function, 'torch', 'python_torch_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_nn_function, 'torch.nn', 'python_nn_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_fft_function, 'torch.fft', 'python_fft_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_linalg_function, 'torch.linalg', 'python_linalg_functions.cpp', method=False)
def create_python_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
) -> None:
"""Generates Python bindings to ATen functions"""
py_methods: List[str] = []
py_method_defs: List[str] = []
py_forwards: List[str] = []
grouped: Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
if pred(pair.function):
grouped[pair.function.func.name.name].append(pair)
for name in sorted(grouped.keys(), key=lambda x: str(x)):
overloads = grouped[name]
py_methods.append(method_impl(name, module, overloads, method=method))
py_method_defs.append(method_def(name, module, overloads, method=method))
py_forwards.extend(forward_decls(name, overloads, method=method))
fm.write_with_template(filename, filename, lambda: {
'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
'py_forwards': py_forwards,
'py_methods': py_methods,
'py_method_defs': py_method_defs,
})
def load_signatures(
native_yaml_path: str,
deprecated_yaml_path: str,
*,
method: bool,
skip_deprecated: bool = False,
pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
native_functions = list(filter(should_generate_py_binding, parse_native_yaml(native_yaml_path)))
@with_native_function
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
return PythonSignatureNativeFunctionPair(
signature=signature(f, method=method, pyi=pyi),
function=f,
)
pairs = list(map(gen_signature_pairs, native_functions))
deprecated = load_deprecated_signatures(pairs, deprecated_yaml_path, method=method, pyi=pyi)
return pairs if skip_deprecated else pairs + deprecated
def load_deprecated_signatures(
pairs: Sequence[PythonSignatureNativeFunctionPair],
deprecated_yaml_path: str,
*,
method: bool,
pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
# The deprecated.yaml doesn't have complete type information, we need
# find and leverage the original ATen signature (to which it delegates
# the call) to generate the full python signature.
# We join the deprecated and the original signatures using type-only form.
# native function -> type-only signature
@with_native_function
def signature_original(f: NativeFunction) -> str:
# remove inplace suffix but keep outplace suffix
opname = str(f.func.name.name.base)
if f.func.is_out_fn():
opname += '_out'
# TODO: remove HACK
# I think we want to differentiate inplace functions here.. but we currently don't for the arg parser
if f.func.name.name.inplace and pyi:
opname += '_'
args = CppSignatureGroup.from_schema(f.func, method=False).signature.arguments()
# Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
types = ', '.join(argument_type_str(a.argument.type)
for a in args if isinstance(a.argument, Argument))
return f'{opname}({types})'
# deprecated -> type-only native signature (according to the call order)
def signature_deprecated(opname: str, params: List[str], call_args: List[str]) -> str:
# create a mapping of parameter name to parameter type
types: Dict[str, str] = {}
for param in params:
if param == '*':
continue
type, name = param.split(' ')
types[name] = type
# if the name in the call is not in the parameter list, assume it's
# a literal Scalar
rearranged_types = ', '.join(types.get(arg, 'Scalar') for arg in call_args)
return f'{opname}({rearranged_types})'
# group the original ATen signatures by type-only signature
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
grouped[signature_original(pair.function)].append(pair)
# find matching original signatures for each deprecated signature
results: List[PythonSignatureNativeFunctionPair] = []
with open(deprecated_yaml_path, 'r') as f:
deprecated_defs = yaml.load(f, Loader=Loader)
for deprecated in deprecated_defs:
_, params = split_name_params(deprecated['name'])
aten_name, call_args = split_name_params(deprecated['aten'])
for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
# It uses the types from the original ATen declaration, but the
# ordering and parameter names from the deprecated overload. Any
# default parameter values from the original ATen declaration are
# ignored.
# Deprecated signature might reorder input_args and input_kwargs,
# but never changes output_args nor TensorOptions (if any?),
# so here we only look into these two types of args.
python_sig = pair.signature
src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
name=a.name,
type=a.type,
default=None,
default_init=None,
) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
args: List[str] = []
input_args: List[PythonArgument] = []
input_kwargs: List[PythonArgument] = []
kwarg_only = False
for param in params:
if param == '*':
kwarg_only = True
continue
_, param_name = param.split(' ')
args.append(param_name)
if param_name not in src_args:
# output argument
continue
if not kwarg_only:
if not method or param_name != 'self':
input_args.append(src_args[param_name])
else:
input_kwargs.append(src_args[param_name])
results.append(PythonSignatureNativeFunctionPair(
signature=PythonSignatureDeprecated(
name=python_sig.name,
input_args=tuple(input_args),
input_kwargs=tuple(input_kwargs),
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_args_names=tuple(args),
deprecated_args_exprs=tuple(call_args),
returns=python_sig.returns,
),
function=pair.function,
))
return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@with_native_function
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
name = cpp.name(f.func)
fieldnames = namedtuple_fieldnames(f.func.returns)
return '_'.join([name] + fieldnames)
def emit_namedtuple_typedefs(
overloads: Sequence[PythonSignatureNativeFunctionPair]
) -> Tuple[List[str], Dict[str, str]]:
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
flddefnames: Dict[str, str] = {} # map from unique field name lists to field def name
flddefs: List[str] = [] # field def declarations
typenames: Dict[str, str] = {} # map from unique name + field name lists to typedef name
typedefs: List[str] = [] # typedef declarations and init code
for overload in overloads:
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
fn_key = '_'.join(fieldnames)
fieldsname = flddefnames.get(fn_key)
if fieldsname is None:
fieldsname = f'NamedTuple_fields{"" if not flddefs else len(flddefs)}'
flddefnames[fn_key] = fieldsname
fields = ', '.join(f'{{"{fn}", ""}}' for fn in fieldnames)
flddefs.append(f"""\
static PyStructSequence_Field {fieldsname}[] = {{ {fields}, {{nullptr}} }};
""")
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_namedtuple_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
typenames[tn_key] = typename
typedefs.append(f"""\
static PyTypeObject {typename};
static bool {typename}_initialized = false;
if (!{typename}_initialized) {{
{typename}_initialized = true;
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, {fieldsname}, {len(fieldnames)} }};
PyStructSequence_InitType(&{typename}, &desc);
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
}}
""")
return flddefs + typedefs, typenames
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
""")
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate("""\
case ${overload_index}: {
${body}
}
""")
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
def method_impl(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
noarg = is_noarg(overloads)
namedtuple_inits, namedtuple_typenames = emit_namedtuple_typedefs(overloads)
method_header = ['HANDLE_TH_ERRORS']
method_header += namedtuple_inits
method_header += [
"Tensor& self = reinterpret_cast<THPVariable*>(self_)->cdata;"
] if method else []
method_footer = ([] if noarg else ['Py_RETURN_NONE;']) + ['END_HANDLE_TH_ERRORS']
traceable = 'true' if all(should_trace(o.function) for o in overloads) else 'false'
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
is_singleton = len(grouped_overloads) == 1
signatures: List[str] = []
dispatch: List[str] = []
for overload_index, overload in enumerate(grouped_overloads):
signature = overload.signature.signature_str()
signatures.append(f'{cpp_string(str(signature))},')
dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
dispatch.append(
PY_VARIABLE_CASE.substitute(overload_index=overload_index, body=dispatch_body)
if not is_singleton else dispatch_body)
if noarg:
template = PY_VARIABLE_METHOD_NOARGS
elif is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
signatures=signatures,
traceable=traceable,
check_has_torch_function=gen_has_torch_function_check(
name=name,
module=module,
noarg=noarg,
method=method,
),
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if method else "nullptr",
)
def gen_has_torch_function_check(
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
if noarg:
if method:
return f"""\
if(check_has_torch_function(self_)) {{
return handle_torch_function(self_, "{name}");
}}
"""
else:
return ''
self_ = "self_" if method else "nullptr"
namespace = {
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
}[module] if module else "THPVariableClass"
return f"""\
if(_r.has_torch_function()) {{
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""
# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate("""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
""")
def emit_dispatch_case(
overload: PythonSignatureGroup,
namedtuple_typenames: Dict[str, str],
) -> str:
"""
Emit dispatch code for a single parsed signature. This corresponds to either
a single native function, or a pair that differ only in output params. In the
latter case, a single python signature is used for both and dispatching
switches on the presence/absence of passed output args.
"""
if overload.outplace is not None:
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
return PY_VARIABLE_OUT.substitute(
out_idx=overload.signature.output_idx(),
call_dispatch=emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames),
call_dispatch_out=emit_single_dispatch(
overload.signature, overload.outplace, namedtuple_typenames),
)
else:
# no-output version only
return emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Forward Declarations Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def forward_decls(
name: BaseOperatorName,
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> Tuple[str, ...]:
if method:
return ()
pycname = get_pycname(name)
if is_noarg(overloads):
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args);
""",)
else:
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""",)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Def (Binding Table Entry) Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def method_def(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate method def entry.
"""
pycname = get_pycname(name)
if is_noarg(overloads):
pyfunc_cast = ''
flags = 'METH_NOARGS' if method else 'METH_VARARGS | METH_KEYWORDS'
else:
pyfunc_cast = 'castPyCFunctionWithKeywords'
flags = 'METH_VARARGS | METH_KEYWORDS'
if module == "torch":
flags += ' | METH_STATIC'
if name.dunder_method:
# PyMethodDef entry for binary op, throws not implemented error
return f"""\
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
else:
# PyMethodDef entry
return f"""\
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Overload Sorting and Grouping
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def group_overloads(
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
sort: bool = True,
) -> Sequence[PythonSignatureGroup]:
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
# first group by signature ignoring out arguments
for overload in overloads:
sig = overload.signature.signature_str(skip_outputs=True)
if overload.function.func.is_out_fn():
if sig in outplaces:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {outplaces[sig].function.func}.'
)
outplaces[sig] = overload
else:
if sig in bases:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {bases[sig].function.func}.'
)
bases[sig] = overload
for sig, out in outplaces.items():
if sig not in bases:
candidates: List[str] = []
for overload in overloads:
if str(overload.function.func.name.name) == str(out.function.func.name.name) \
and not overload.function.func.is_out_fn() \
and not overload.signature.deprecated:
candidates.append(overload.signature.signature_str(skip_outputs=True))
out_sig = out.signature.signature_str()
raise RuntimeError(
f'While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. '
f'We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema '
'correctly in native_functions.yaml. We discovered the following candidate(s): \n'
+ '\n'.join(f'- {candidate}' for candidate in candidates))
grouped: List[PythonSignatureGroup] = []
for sig, base in bases.items():
outplace = outplaces.get(sig)
grouped.append(PythonSignatureGroup(
# prefer the signature with optional out=... arguments because it's the
# superset that can be used to parse input for both base and outplace.
signature=outplace.signature if outplace is not None else base.signature,
base=base.function,
outplace=outplace.function if outplace is not None else None,
))
# TODO: unconditionally sort
# maintaining byte-for-byte compatibility for pyi codegen for now
return grouped if not sort else sort_overloads(grouped)
# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
#
# A few examples of ambiguous python signature pairs.
#
# All parameters have the same type, except one taking Tensor the other taking
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
# Therefore, same input arguments might be accepted by either python signature.
# We want to always parse the one taking Tensor first.
#
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
#
# If they have different number of parameters then they are not ambiguous - but
# the difference on output param can be ignored as it's optional.
#
# multiply(Tensor input, Tensor other, *, Tensor out=None)
# multiply(Tensor input, Scalar other)
#
# Both positional args and keyword-only args are considered together.
#
# subtract(Tensor other, *, Scalar alpha=1)
# subtract(Scalar other, Scalar alpha=1)
#
# A few ambiguous cases which it does NOT handle yet.
#
# If there is any difference in other parameters besides the Tensor/Scalar
# difference, then they are not considered ambiguous by this method anymore.
# However, the difference could be too trivial to disambiguate.
#
# foo(Tensor input, Scalar other, Scalar bar)
# foo(Tensor input, Tensor other, double bar)
#
# If they are taking different number of parameters then they are not considered
# ambiguous anymore, even if the difference is only on optional kwargs.
#
# foo(Scalar other, Scalar alpha=1)
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
#
def sort_overloads(
grouped_overloads: Sequence[PythonSignatureGroup]
) -> Sequence[PythonSignatureGroup]:
def is_arg_smaller(t1: Type, t2: Type) -> bool:
return str(t1) == 'Scalar' and str(t2) == 'Tensor'
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
"""Returns True if s1 < s2 in the partial order."""
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
if len(args1) != len(args2):
return False
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
smaller_or_equal = all(str(arg1.type) == str(arg2.type)
or is_arg_smaller(arg1.type, arg2.type)
for arg1, arg2 in zip(args1, args2))
return smaller_or_equal and not equal
# First sort by signature
grouped_overloads = sorted(grouped_overloads, key=lambda x: x.signature.signature_str())
# Construct the relation graph
larger_than: Dict[int, Set[int]] = defaultdict(set)
for i1, overload1 in enumerate(grouped_overloads):
for i2, overload2 in enumerate(grouped_overloads):
if is_smaller(overload1.signature, overload2.signature):
larger_than[i1].add(i2)
if not larger_than:
return list(grouped_overloads)
# Use a topological sort to sort overloads according to the partial order.
N = len(grouped_overloads)
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
for idx in range(N):
# The size of sorted_ids will grow to N eventually.
i = sorted_ids[idx]
for j in sorted(larger_than.keys()):
larger = larger_than[j]
larger.discard(i)
if not larger:
del larger_than[j]
sorted_ids.append(j)
return list(map(lambda x: grouped_overloads[x], sorted_ids))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def emit_single_dispatch(
ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
) -> str:
"""
Emit dispatch code for a single native function.
"""
@with_native_function
def go(f: NativeFunction) -> str:
# header comments
deprecated = '[deprecated] ' if ps.deprecated else ''
schema_comment = f'// {deprecated}aten::{f.func}'
# dispatch lambda signature
name = cpp.name(f.func)
lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
dispatch_lambda_args(ps, f)))
lambda_return = dispatch_lambda_return_str(f)
# dispatch lambda body
dispatch_callee = cpp_dispatch_target(f)
dispatch_args = ', '.join(cpp_dispatch_exprs(f, python_signature=ps))
# from arg parser outputs to dispatch lambda arguments
parser_outputs = arg_parser_output_exprs(ps, f)
lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
inits = '\n'.join(lambda_arg_exprs.inits)
lambda_args = ', '.join(lambda_arg_exprs.exprs)
# scatter fields
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
# solution for enabling the 'requires_grad' argument for tensor methods
# new_full, new_empty, and new_zeros. A much better but more difficult to
# implement solution involves refactoring according to Ed's description here:
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
ps.method and ('requires_grad' in parser_outputs)))
set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
if need_set_requires_grad else ''
if lambda_return == 'void':
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
{dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
else:
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
namedtuple_typeref = f'&{typename}, ' if typename is not None else ''
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
return {dispatch_callee}({dispatch_args});
}};
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""
return go(f)