Commit Graph

82 Commits

Author SHA1 Message Date
Igor Sugak
4a17693d19 [CODEMOD][caffe2] replace uses of np.float with np.float64 (#112675)
Differential Revision: D50752096

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112675
Approved by: https://github.com/Skylion007
2023-11-03 03:00:51 +00:00
Igor Sugak
93e5065ba0 [CODEMOD][caffe2] replace numpy.bool with bool (#111432)
Test Plan:
numpy.bool is long deprecated and removed starting numpy-1.20.0 [1]. This replaces all references with equivalent `bool` type using the following oneliner:
```
rg -l 'np\.bool' caffe2 | grep '\.py$' | xargs perl -pi -e 's,\bnp\.bool\b,bool,'
```
1. https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

Differential Revision: D50372711

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111432
Approved by: https://github.com/Skylion007
2023-10-18 18:56:40 +00:00
Omkar Salpekar
ae1ed27756 [codemod][numpy] replace np.str with str (#103931)
Summary:
`np.str` is removed from numpy 1.20.0. It was an alias to builtin `str` and it's safe to do the replacement.

The whole changes is mechanical, generated using the following onliner:
```
fbgr -sl 'np\.str\b' | xargs perl -pi -e 's,\bnp\.str\b,str,g'
```

Test Plan: sandcastle

Differential Revision: D46586144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103931
Approved by: https://github.com/huydhn
2023-06-21 18:16:42 +00:00
Xuehai Pan
8d45f555d7 [BE] [1/3] Rewrite super() calls in caffe2 and benchmarks (#94587)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587
Approved by: https://github.com/ezyang
2023-02-11 18:19:48 +00:00
Nikita Shulga
1906eaf22f [BE] Get rid of future (#92596)
PyTorch has been Python-3.X+ for ages, so it's a shame to still rely on `future.utils` even in a deprecated Caffe2 codebase

For the reference:
https://peps.python.org/pep-0469/#migrating-directly-to-python-3

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92596
Approved by: https://github.com/kit1980, https://github.com/orionr
2023-01-19 08:46:50 +00:00
Richard Barnes
9945fd7253 Drop unused imports from caffe2/python (#49980)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49980

From
```
./python/libcst/libcst codemod remove_unused_imports.RemoveUnusedImportsWithGlean --no-format caffe2/
```

Test Plan: Standard sandcastle tests

Reviewed By: xush6528

Differential Revision: D25727359

fbshipit-source-id: c4f60005b10546423dc093d31d46deb418352286
2021-01-05 13:17:46 -08:00
skyline75489
46b83212d1 Remove unused six code for Python 2/3 compatibility (#48077)
Summary:
This is basically a reborn version of https://github.com/pytorch/pytorch/issues/45254 .

Ref: https://github.com/pytorch/pytorch/issues/42919

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48077

Reviewed By: ngimel

Differential Revision: D25687042

Pulled By: bugra

fbshipit-source-id: 05f20a6f3c5212f73d0b1505b493b720e6cf74e5
2020-12-22 18:07:08 -08:00
Bugra Akyildiz
27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00
Eileen Pan
f07816003a [2/n][Compute Meta] support analysis for null flag features
Summary:
## TLDR
Support using NaN default value for missing dense features in RawInputProcessor for DPER2. In preparation for subsequent support for null flag features in compute meta. For train_eval this is already supported in DPER3 and we do not plan to support this in DPER2 train eval.

Differential Revision: D22439142

fbshipit-source-id: 99ae9755bd41a5d5f43bf5a9a2819d64f3883005
2020-07-20 13:13:45 -07:00
Li Zhang (DAI)
69e701fbf9 Add transfer_learning_blob_name_mappings into layer_model_helper to support layer model transfer learning
Summary: Add transfer_learning_blob_name_mappings into layer_model_helper to support layer model transfer learning

Reviewed By: mraway

Differential Revision: D20286298

fbshipit-source-id: de3e029611d843f38d3f42ecd4148358f7e14a2b
2020-03-18 15:28:00 -07:00
Brian Wignall
e7fe64f6a6 Fix typos (#30606)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30606

Differential Revision: D18763028

Pulled By: mrshenli

fbshipit-source-id: 896515a2156d062653408852e6c04b429fc5955c
2019-12-02 20:17:42 -08:00
Xing Wang
a1513dced3 Integrate FC fp16 exporter into Dper2 (#26582)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26582

Add the blob quantization.
replace the op in the eval/predictor net.

Test Plan:
# Unit test:

-----

buck build fblearner/flow/projects/dper/tests/validators:test_exporter_options_validators

./buck-out/gen/fblearner/flow/projects/dper/tests/validators/test_exporter_options_validators#binary.par

----

buck build caffe2/caffe2/fb/dper/layer_models/tests:exporter_test

./buck-out/gen/caffe2/caffe2/fb/dper/layer_models/tests/exporter_test-2.7#binary.par

Reviewed By: chocjy

Differential Revision: D17439720

fbshipit-source-id: 68de5d0322b0111aeca5ed552210bf80a4cddc78
2019-09-29 10:19:28 -07:00
Le Fang
a1b10270c2 Fix the bug in regularizer matching (#23485)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23485

In previous diff D16326492, the "regularizer" in dot processor is defined according to input regularizer options through the function "get_emb_weighting_reg" in processor_utils.py. The option matching is only valid in local test, but doesn't work in workflows. This bug causes the regularizer not added in actual models and has made previous trimmed lasso implementation useless.

An evidence is that before D16326492, a flow f126010621 has elastic regularizer added:
https://our.intern.facebook.com/intern/chronos/jobinstance/?jobinstanceid=5375243255&smc=chronos_gp_admin_client

{F171862755}

while after D16326492, the regularizer is gone in flow f127262007
https://our.intern.facebook.com/intern/chronos/jobinstance/?jobinstanceid=5428982684&smc=chronos_gp_admin_client

{F171862770}

Differential Revision: D16535466

fbshipit-source-id: 6b0b5e95b2b14a0d6c6d65f96bab89529f4e79c5
2019-08-02 15:54:48 -07:00
Le Fang
ac4913ee62 support both regularizable and sofmax re-weighting on sparse features in dot product (#22176)
Summary:
In order to select more important features in dot product among a list of candidate sparse features, we can assign one learnable weight on each feature, reweight each feature by multiplying the weight onto its embedding before dot product. We finally select features based on the weight magnitude after training.

We can perform L1 and/or L2 regularization on the weights. To summarize, the weights tend to shrink their values (avoiding overfitting) due to L2 regularization, and some weights will vanish to zero as L1. To avoid sparse feature embedding being ignored due to early collapse of weights, a piece lr warm up policy is used in optimizing regularization term, such that regularization is weak at first stage and gets stronger afterwards (a small lr constant in iters less than threshold 1, a medium lr constant in stage 2, and a final reasonable large lr constant in all iters after threshold 2). The features with nonzero and relatively large weights (in absolute value) will be selected for the module.

We can also apply softmax on the original weights to make it sum to 1. We can even boosting the softmaxed weights by multiply the number of softmax components, which essentially make them sum to the number of softmax components and avergae to 1. In this idea, all the weights are positive and sum to a constant. Regularization is not a must since we can count on the competition between softmax weights themselves to achieve reasonable re-weighting. We expect those weights be more dense, comparing with sparse ones from L1 regularization and we can select features based on top K weights.

Overall, we aim to demonstrate the selected feature set outperform current v0 feature set in experiments. Special acknowledgement goes to Shouyuan Chen, who initiated the work of regularizable weighting.

 ---

Pull Request resolved: https://github.com/pytorch/pytorch/pull/22176

The diff will export updates to Github repository, as stated below.

{F162787228}

Basically, the updates on the files are summarized as below:

- adding logger messages
`caffe2/python/layer_model_helper.py`
- add ElasticNet regularizer, which combines both L1 and L2 regularization
`caffe2/python/regularizer.py`
- implement piecewarmup, specifically warm up with three constant pieces
`caffe2/sgd/learning_rate_functors.h, caffe2/sgd/learning_rate_op.cc, caffe2/sgd/learning_rate_op.h`

Differential Revision: D15923430

fbshipit-source-id: ee18902cb88c23b1b7b367cc727d690a21e4cda9
2019-06-24 21:27:33 -07:00
Shunting Zhang
fea4a56af3 Add ability to filter metric schema in LayerModelHelper (#20786)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20786

Add a method to LayerModelHelper to filter metrics_schema. A general model builder may add metric schema that is not needed in some situations. This change add the ability to skip those unneeded.

Reviewed By: alex1o1o7cloud

Differential Revision: D15418140

fbshipit-source-id: 520f5dffd9938cf206cb1352e2953a4d4d2b6ab1
2019-05-22 12:26:20 -07:00
Jiyan Yang
c48e1679f9 Add validator for optimizers when parameters are shared
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18497

Reviewed By: kennyhorror

Differential Revision: D14614738

fbshipit-source-id: beddd8349827dcc8ccae36f21e5d29627056afcd
2019-04-17 21:10:38 -07:00
Xianjie Chen
b885dea300 parallize the dense part in event models
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10768

Reviewed By: Wakeupbuddy

Differential Revision: D9445750

fbshipit-source-id: b8c2ddfe3ccb9278506de15a5e43bada016408f7
2018-08-22 22:40:07 -07:00
François Garillot
f0ec3bfa56 Changes for Python3 compatibility (#10524)
Summary:
Review by tomdz volkhin anshulverma
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10524

Reviewed By: ezyang

Differential Revision: D9328001

Pulled By: huitseeker

fbshipit-source-id: 144721c4fd9a1ea6cf6673793416f20cb448aa93
2018-08-22 18:55:01 -07:00
tomdz
44f996f82c Py3 fixes for layer_model_helper.py (#10525)
Summary:
Fixes `__getattr__` to adhere to its Python API contract, and wraps `range()` call in a list since it does not return one anymore in Python 3.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10525

Reviewed By: ezyang

Differential Revision: D9441360

Pulled By: tomdz

fbshipit-source-id: d489c0e7cefecc4699ca866fd55ddbfa629688d4
2018-08-21 18:41:28 -07:00
Xiaolong Wang
3e9e3ef383 Improving diagnose RF NE with Cali (#9550)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9550

as titled

Differential Revision: D8899226

fbshipit-source-id: 3c7cf026e8cbc0e95770e5a35b213a97bebba385
2018-07-23 13:40:21 -07:00
Orion Reblitz-Richardson
9ec0a2aef4 fbshipit-source-id: ba600fcd2b5cefc7621357bdeb05e24cea02e5af 2018-06-27 04:50:56 -07:00
Orion Reblitz-Richardson
edb88b5f3a
Update from Facebook (#8887)
* add opencl + fpga context

adds an opencl context inside caffe2/fb which can be used for fpga access

* [Caffe2] Force tensor inference checks to be triggered during testing

We've started to rely on TensorInference functions more for different analysis.  This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator.

* Enable building //caffe2:torch with @mode/opt

In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.

* [Caffe2] Fix cost models for DotProduct and Div.  Update Tensor Inference for dot product

As title.  DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs.  TensorInference defined to support implementation.

* [SG-MoE] Add an option to make the experts NOT as components

* [nomnigraph] Rename and fixup convertToNeuralNetOperator API

This will make things a bit cleaner

* no longer symlink THNN.h and THCUNN.h

* forced decoder network (onnx export)

Closes https://github.com/pytorch/translate/pull/95

Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties.

Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea

* Revert schema change to fix production models

Revert schema change to fix production models

* MockLogDeviceReader - rebase on FIX

# Goal

1), Build a make_mock_log_device_reader using make_mock_reader

2), Replace the real log_device_reader here: https://fburl.com/raihwf1p

# Log by D8151734

Real log_device_reader:
```
I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0
I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin

* [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier

implement log barrier as a regularization method

* Add teacher weight screening.

Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function.

* Add NormalizerContext

See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file.

I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow.

https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1

* Adding cosine similarity option in dot processor

Add pairwise cosine similarity option in dot product.
Add an option to concate dot product and cosine similarity.
Add test cases.

* [nomnigraph][redo] Concat elim for sparseNN

Same as D7962948, which was reverted because Operator Schema was not
defined

* [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN

Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads).

https://github.com/pytorch/pytorch/pull/7918/files

* [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size

enables nomnigraph and reduces codesize

* [Warmup] Allow both offline incremental training and online training

Change plan name on saving side and reading side to support both training type

This diff depends on D8128530 and D8168651.

* Revert D7802642: [Warmup] Allow both offline incremental training and online training

This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Add legacy grad logic to fix div op on old graphs.

Add legacy grad logic to fix div op on old graphs.

* Correctly propagate operator failures

Propagate errors from operators that throw exceptions and return false

* Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN

This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope

extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption().  And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope.

* [opt] hgdirsync wasn't enabled, merge diverged code

Here's the damage, P59732616 basically xplat was left behind but had
the change from assert to CAFFE_ENFORCE

* OMP parallelism over RoIs for RoIAlign op

Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on
the number of OMP threads set during startup.

PR: https://github.com/pytorch/pytorch/pull/8562

* Use int64_t for shape in FillOps

to avoid overflow of int32

* Implement Rotated RoIAlign op

Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086.
The idea is simple - orientation/angle is added as an RPN
anchor parameter and then the angle is further regressed similar to bbox
coords. There are some additional changes related to NMS and IoU, but besides
that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ.

RoIs are represented in [center_x, center_y, width, height, angle] format.
`angle` repre

* Rotated RoIAlign op CUDA forward implementation

CUDA forward impl for D8415490

* RoIAlignRotated op CUDA backward pass implementation

TSIA

* All remaining fixes to eliminate process_github.sh

Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py

remove skipIf(True, 'Fbcode') line from process_github.sh

replace sed of cpp file with #ifdef to control cudnnDestroy use

undo sync-time deletion of .gitattributes, remove process_github.sh

switch to using _utils._internal rather than try-import-except

This diff also fixes the open-source bug where rebuilds have

* Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package

* [easy] improve error log in adagrad op

as title

* re-allow use of thnn_h_path

This fixes cffi usage in OSS

* [4/4] [tum] paralyzing layerNorm for GPU full sync

as title

* add compile=False to pytorch tests, remove hack with pyc

* Add shape and type inference for RowWiseArgMax operator

See title

* Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally

# Problem

`MockHiveReader` uses `GlobalCounter` to limit `max_examples`.

GlobalCounter on server node collect local counts from worker nodes every 1 sec.

This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`.

# Plan

Given,
```
Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int

* [Caffe2] Fix FCGradient cost inference.  Prevent overflow in cost inference

FCGradient missed a factor 2 in the `num_outputs == 3` case.  Overflow was occurring with flop calculation for FC.  Changed types to `uint64_t` to prevent future problems.

* Fix binary ops with empty inputs

Fix binary ops with empty inputs

* Support the filling of input blob with provided data

as title for Biz Integrity case

* Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test.

* [c2][easy] improve pack ops error loggings

as desc.

* Add ShapeTypeInference for LpNorm operator

As desc

* Shard test_nn to reduce runtime for each test target

Closes https://github.com/pytorch/pytorch/pull/8793

The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future.

* Change default caffe2_streams_per_gpu to 1

* Remove IN_SANDCASTLE from common.py and test_nn.py

We prefer to disable the failing tests through Sandcastle UI instead.

* Add a new class for an updated prof_dag.proto

This diff contains:
- An updated prof_dag.proto that contains blob profiles.
- A class to deserialize this information (serialization is in a follow up diff)
- Update to separate profiling information from NeuralNet (and use it as part of the class above).
- Unit tests

* Lambdarank for SparseNN

This diff adds a lambda_rank_layer for SparseNN.
 changes include
1) Adds support for multi sessions in c2 op
2) Adds support for two different loss functions in c2 op
3) Unit tests for op

* Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [easy] A few fixups to multithread predictor benchmark

(1) support perf on T6 server
(2) remove dead code

* fix a bug about the map size

as title

* Fix reduce sum on in-place case.

Fix reduce sum on in-place case.

* [Warmup] Reland reverted diff Allow both offline incremental training and online training

Closes https://github.com/pytorch/pytorch/pull/8827

fix net transform integration test. Allow offline and online trainer to coexist D7802642.

* Add StoreHandlerNotAvailableException

Add an exception for a store that is not available or has been
deleted.

* Use exception handling for fault tolerance, missing KV store

Remove status blobs to communication ops so that exceptions propagate on
failure.

* [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj

for simple bounded constrained optimization, incl non-negative box constraints.

* [GanH]: Adaptive Weighting with More Estimations

With implemented postivity optimization, we now learn adaptive weights with different
parameterizations.

This improves parameter estimation and training stability.

* Revert some changes for landing

* Remove AutoNoGIL in StorageSharing

* Temporarily disable net_tests

* Revert "[Caffe2] Force tensor inference checks to be triggered during testing"

This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4.

* Revert "Fix reduce sum on in-place case."

This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64.

* Revert "Revert "Fix reduce sum on in-place case.""

This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
2018-06-26 14:55:48 -07:00
sf-wind
5b86c3af4a
Update from facebook (#8384)
* [fix] fixup the bias multiplier data access issue

Hotfix for failues in conv_transpose

* [D2][Easy]: lint regularizer

lint with black

* [GanH]: Split mu in adaptive weight for diagnose

* [Dper] Add the ability to split FC weights into multiple smaller ones

* fix SumReduceLikeOp for empty blob

as desc.

* add ctc_greedy_decoder for caffe2

ctc_greedy_decoder same as tf's

* Update event callback handling

Allow multiple callbacks per event

* Add WeightedSum layer

The motivation is to do weighted sum in HoNet/crossnet, in the next diff, I'll replace model.Add with model.WeightedSum in
honet: https://fburl.com/f4rmolg2
crossnet: https://fburl.com/v7awn8se, https://fburl.com/63filbnm

* Replicate DAG's behavior

Some callers expect RunAsync to block, replicate that behavior in case of
explicit 'dag' net type

* [dper] layernorm layer

as title

* Override dag, async_dag, async_polling

Overriding dag, async_dag and async_polling with async_scheduling

* Name the thread pools

Caffe thread pools currently inherit the thread names from the thread that starts them, which can be misleading. Give them an explicit name instead.

* [Caffe2] FilleOp should support int64_t dimensions

Change argument type to int64_t for shape argument of FillerOp (used in ConstantFill, XavierFill, etc)

* Remove caffe2/caffe2/contrib/torch/

It's not used anywhere and depends on old lua torch that conflicts with Aten. Given PT1 it's not relevant any more (though it was nice and clever code!)

#accept2ship

* Fix linearWarmup multiplier check

The multiplier needs to be non-negative, not strictly positive.

* Revert D3314316

This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.

* Speedup generate proposals by partial_sort.

Speedup generate proposals by partial_sort.

FACEBOOK:
- Saw speed improvement for training with this op.
- Yanghan benchmarked the op on a small dataset and see consistent 100% improvement on speed (6ms -> 3ms) on 420 input resolution. See next diff for details.

* More parallel processing friendly for CPP version of GenerateProposals.

More parallel processing friendly for CPP version of GenerateProposals.

* [DT] [43/n] Lift stop conditions inside reader code back to flow control

1. Split multi_reader function into local_reader and remote_reader
2. Lifted stop conditions inside Limiter back to flow control
3. Split epoch flow building logic into 3 cases:
  - single machine (1 reader, 1 trainer on trainer0 node, no PS)
  - (1 reader + 1 trainer) on trainer0 node, has PS
  - multiple readers, readers do not share nodes with trainers, might have PS or not

* Resolve conflicts for torch/_thnn/utils.py

* [Caffe2] Handle image decoding errors

Image decoding errors can make the whole training fail. This diff is to handle them
1.Catch imdecode exceptions and check if decoded image has zero columns or rows. This is counted as decoding errors.
2.Replace the image with empty in case of error
3.Count the number of errors and throw runtime exception if the rate reaches given number

The empty image data is kept. It might introduce noise in the training data.

* Update MKL exporter to IDEEP ops

TSIA

* [Caffe2] GlobalInit is thread safe, fixing the comment

With the mutex and lock, GlobalInit is thread safe.
Update the comments.

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* [DT]: fix predictor save

similar to D6610058, here we add the fix for distributed online training

* Remove net_singlethread_async_gpu.cc

Closes https://github.com/caffe2/caffe2/pull/2528

This removes net_singlethread_async_gpu.cc as part of our effort to clean
CUDAContext and the net executors.

* Inline DFS task execution

Add a DFS inline task execution mode in executor

* Add c10 folder to fbcode

This adds the c10 folder and its test cases to fbcode. Build flags are mostly taken from aten.

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* [Fix] sparse regularization in distributed training

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* Improve shard logging in net tracing code

Make it handle arbitrary shard ids instead of just one digit ids.

* [Caffe2] Call GlobalInit in predictor only in mobile

FACEBOOK:
Calling GlobalInit long after the program starts may not be safe. There are issues if the following happens:

User does not call GlobalInit and initFacebook after program starts
User sets a flag manually: https://fburl.com/mcsumw7d
User calls OSS predictor.
OSS predictor calls GlobalInit
GlobalInit calls initFacebook
initFacebook resets all flags: https://fburl.com/tolszha1
Thus, the user manually set flags are overwritten

This would happen anytime GlobalInit is called long after the program starts.
I suppose the intention of the user in this case is not to call GlobalInit throughout the program,
but use Caffe2 regardless (is that desired?)
But adding GlobalInit in the OSS predictor would automatically call GlobalInit when using Caffe2.

This issue doesn't exist in mobile, since initFacebook is not called on mobile.

For now, guard the GlobalInit in predictor for mobile only.
May want to ensure the GlobalInit is always called at the start of the program. @[3501714:kutta] has seen weird issues when not calling GlobalInit at the start of the program on server side. He has made some progress on this.

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Add empty fix for SumLikeReduceOp

Add empty fix for SumLikeReduceOp

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* Add thread_name.cc to the CMake file

* No need to subtract 1. Fix test segfaults

* Fix NetTest, ObserverTest

Fix tests

(cherry picked from commit 3767e66c3f365596cba3d46d3e7322c933a0ab41)

* CTCGreedyDecoderOp only has CPU implementation, test should only run on CPU

* Add a variable to avoid conversion resizing issue

* [fix] fixup the bias multiplier data access issue

Hotfix for failues in conv_transpose

* [D2][Easy]: lint regularizer

lint with black

* [GanH]: Split mu in adaptive weight for diagnose

* [Dper] Add the ability to split FC weights into multiple smaller ones

* fix SumReduceLikeOp for empty blob

as desc.

* add ctc_greedy_decoder for caffe2

ctc_greedy_decoder same as tf's

* Update event callback handling

Allow multiple callbacks per event

* Add WeightedSum layer

The motivation is to do weighted sum in HoNet/crossnet, in the next diff, I'll replace model.Add with model.WeightedSum in
honet: https://fburl.com/f4rmolg2
crossnet: https://fburl.com/v7awn8se, https://fburl.com/63filbnm

* Replicate DAG's behavior

Some callers expect RunAsync to block, replicate that behavior in case of
explicit 'dag' net type

* [dper] layernorm layer

as title

* Override dag, async_dag, async_polling

Overriding dag, async_dag and async_polling with async_scheduling

* Name the thread pools

Caffe thread pools currently inherit the thread names from the thread that starts them, which can be misleading. Give them an explicit name instead.

* [Caffe2] FilleOp should support int64_t dimensions

Change argument type to int64_t for shape argument of FillerOp (used in ConstantFill, XavierFill, etc)

* Remove caffe2/caffe2/contrib/torch/

It's not used anywhere and depends on old lua torch that conflicts with Aten. Given PT1 it's not relevant any more (though it was nice and clever code!)

#accept2ship

* Fix linearWarmup multiplier check

The multiplier needs to be non-negative, not strictly positive.

* Revert D3314316

This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.

* Speedup generate proposals by partial_sort.

Speedup generate proposals by partial_sort.

FACEBOOK:
- Saw speed improvement for training with this op.
- Yanghan benchmarked the op on a small dataset and see consistent 100% improvement on speed (6ms -> 3ms) on 420 input resolution. See next diff for details.

* More parallel processing friendly for CPP version of GenerateProposals.

More parallel processing friendly for CPP version of GenerateProposals.

* [DT] [43/n] Lift stop conditions inside reader code back to flow control

1. Split multi_reader function into local_reader and remote_reader
2. Lifted stop conditions inside Limiter back to flow control
3. Split epoch flow building logic into 3 cases:
  - single machine (1 reader, 1 trainer on trainer0 node, no PS)
  - (1 reader + 1 trainer) on trainer0 node, has PS
  - multiple readers, readers do not share nodes with trainers, might have PS or not

* Resolve conflicts for torch/_thnn/utils.py

* [Caffe2] Handle image decoding errors

Image decoding errors can make the whole training fail. This diff is to handle them
1.Catch imdecode exceptions and check if decoded image has zero columns or rows. This is counted as decoding errors.
2.Replace the image with empty in case of error
3.Count the number of errors and throw runtime exception if the rate reaches given number

The empty image data is kept. It might introduce noise in the training data.

* Update MKL exporter to IDEEP ops

TSIA

* [Caffe2] GlobalInit is thread safe, fixing the comment

With the mutex and lock, GlobalInit is thread safe.
Update the comments.

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* [DT]: fix predictor save

similar to D6610058, here we add the fix for distributed online training

* Remove net_singlethread_async_gpu.cc

Closes https://github.com/caffe2/caffe2/pull/2528

This removes net_singlethread_async_gpu.cc as part of our effort to clean
CUDAContext and the net executors.

* Inline DFS task execution

Add a DFS inline task execution mode in executor

* Add c10 folder to fbcode

This adds the c10 folder and its test cases to fbcode. Build flags are mostly taken from aten.

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* [Fix] sparse regularization in distributed training

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* Improve shard logging in net tracing code

Make it handle arbitrary shard ids instead of just one digit ids.

* [Caffe2] Call GlobalInit in predictor only in mobile

FACEBOOK:
Calling GlobalInit long after the program starts may not be safe. There are issues if the following happens:

User does not call GlobalInit and initFacebook after program starts
User sets a flag manually: https://fburl.com/mcsumw7d
User calls OSS predictor.
OSS predictor calls GlobalInit
GlobalInit calls initFacebook
initFacebook resets all flags: https://fburl.com/tolszha1
Thus, the user manually set flags are overwritten

This would happen anytime GlobalInit is called long after the program starts.
I suppose the intention of the user in this case is not to call GlobalInit throughout the program,
but use Caffe2 regardless (is that desired?)
But adding GlobalInit in the OSS predictor would automatically call GlobalInit when using Caffe2.

This issue doesn't exist in mobile, since initFacebook is not called on mobile.

For now, guard the GlobalInit in predictor for mobile only.
May want to ensure the GlobalInit is always called at the start of the program. @[3501714:kutta] has seen weird issues when not calling GlobalInit at the start of the program on server side. He has made some progress on this.

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Add empty fix for SumLikeReduceOp

Add empty fix for SumLikeReduceOp

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* Add thread_name.cc to the CMake file

* No need to subtract 1. Fix test segfaults

* Fix NetTest, ObserverTest

Fix tests

(cherry picked from commit 3767e66c3f365596cba3d46d3e7322c933a0ab41)

* CTCGreedyDecoderOp only has CPU implementation, test should only run on CPU

* Add a variable to avoid conversion resizing issue

* Remove the code per soumith's comments

* Remove the code per soumith's comments

* Remove blank lines in the end of file

* Resolve conflicts for torch/_thnn/utils.py

* Update MKL exporter to IDEEP ops

TSIA

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* [caffe2] uprade IDEEP and hotfix for conv op accuracy issue (#8364)

* [IDEEP] Upgrade IDEEP version

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* [IDEEP] Fix accuracy issue in conv op

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* Fix build error due to lack of src in CMakeLists

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* Remove the code per soumith's comments

* [ONNX] Add an ATen fallback pathway for ONNX export (#8273)

* ATen fallback for ONNX export

* Move to enum

* Fix model test

* Add comment

* Address comments

BC interface

* Remove imaginary file (#8415)

* [Caffe2] Enable AMD/MIOPEN ops for Caffe2  (#8306)

* Add hip support for caffe2 core

* Add MIOPEN header/wrapper to caffe2 core

* Add HIP device into caffe2 PB

* top level makefile change for rocm/hip

* makefile scaffolding for AMD/RocM/HIP

* Makefile scafodding for AMD/RocM/HIP; add makefile/utility for HIP files

* caffe2 PB update for AMD/ROCM HIP device

* Add AMD/RocM/Thrust dependency

* HIP threadpool update

* Fix makefile macro

* makefile fix: duplicate test/binary name

* makefile clean-up

* makefile clean-up

* add HIP operator registry

* add utilities for hip device

* Add USE_HIP to config summary

* makefile fix for BUILD_TEST

* merge latest

* Fix indentation

* code clean-up

* Guard builds without HIP and use the same cmake script as PyTorch to find HIP

* Setup rocm environment variables in build.sh (ideally should be done in the docker images)

* setup locale

* set HIP_PLATFORM

* Revert "set HIP_PLATFORM"

This reverts commit 8ec58db2b390c9259220c49fa34cd403568300ad.

* continue the build script environment variables mess

* HCC_AMDGPU_TARGET

* Cleanup the mess, has been fixed in the lastest docker images

* Assign protobuf field hip_gpu_id a new field number for backward compatibility

* change name to avoid conflict

* Fix duplicated thread pool flag

* Refactor cmake files to not add hip includes and libs globally

* Fix the wrong usage of environment variables detection in cmake

* Add MIOPEN CNN operators

* Revert "Add MIOPEN CNN operators"

This reverts commit 6e89ad4385b5b8967a7854c4adda52c012cee42a.

* Add MIOPEN pooling operator

* Add MIOPEN activation operator

* Add MIOPEN softmax operator

* Add MIOPEN spatial batch norm operator

* Add MIOPEN loacl response normalization operator

* Add MIOPEN conv operator

* Clean-up LRN ops

* enable fp16 in MIOPEN pool ops

* Enable fp16 for MIOPEN relu op

* Enable fp16 for MIOPEN spatial batch norm op

* code clean-up

* revert float16 support

* Create Caffe2 python binding for AMD/ROCM/HIP

* Add op fallback for HIP operator

* add hip src/test files in cmake

* exclude hip src/test files

* fix python binding for hip backend

* fix MIOPEN pooling op workspace

* hack to compile miopen operators

* fix include path for MIOPEN ops

* Fix include path

* Add HIP math utilities

* Fix path for HIP math utils

* cmake fix

* Cmake fix / hipcc for hip files

* suppress hipcc warning

* cmake fix /replcae USE_HIP with USE_ROCM

* revert LoadHIP.cmake change

* fix include for thrust/cub-hip

* include path fix for conversion.h

* Updated with latest upstream changes

* clang format fixes

* Context_hip updates

* Fixed typo in rocblas handle get function

* Updated hipified math utils

* Updated math hip test util

* Updated context hip test

* Updated common_hip

* Updated net async dag for HIP

* Added MIOPEN in operator hip test

* fix

* C2 dependencies clean-up

* fix include path for building custom protobuf

* Decouple miopen pool op and conv_pool_op base

* cmake refactor

* fix operator_hip_test

* move all hip/miopen ops files into caffe2/operators/hip

* sanitize cmake

* permission issue

* remove extra parenthesis

* remove artifact from resolving merge conflict

* cont. sanitize cmake files

* fix syntax error

* sanitize conversion.h

* .

* Revert "."

This reverts commit 56020cb0e996a31ae27bf1f8f491955ed0b121b9.

* clang-format

* Enable some reduce operators' ONNX backend tests (#8418)

* fix old comment to point to the right file (#8416)

* Stop pinning nccl version. (#8421)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Expose logsumexp docs and mark log_sum_exp in distributions for internal use (#8428)

* Enable some of the ONNX backend test on broadcasting (#8423)

* Enable some of the ONNX backend test on broadcasting

* enable gemm broadcast

* Expose proto utils and ONNX (#8073)

* Expose proto utils and ONNX from PyTorch libcaffe2.so

* Try to use protobuf from _C.so

* Fix ONNX proto header include

* Adjust order of imports for ONNX until nanopb goes away

* Set and use ONNX_NAMESPACE for PyTorch builds

* Show protobuf summary for all builds

* Add ONNX_NAMESPACE for cpp_build

* Statically link libprotobuf.a into libtorch.so

* Set ONNX_NAMESPACE on Windows build

* Move core/dispatch up as well

* Add /MD flag for Windows build of _C

* Potential Windows fix for ONNX and protobuf

* Add direct linkage from _C to ONNX on Windows

* Only include protobuf wrapper for PyTorch

* Pass extra_compile_args to _nvrtc ext build

* Remove installation of .a files

* Rebase creates some weird situations, revert them manually

* Remove more weird changes due to rebase

* Need to add thread_name.cc after merge
2018-06-13 13:10:45 -07:00
bddppq
f94ae3ba1d
Update from facebook (#7696)
* Fix handling of empty batches in SumReduceDimsOp

As titled

* Deferrable async_scheduling finishRun fix

Proper order of finishing run operations in deferrable_async_scheduling net

* Simplify exception handling in async_scheduling

Simplify exception handling, no need to busy wait, thread that processes the
last task can finish the run

* [C2]worker_coordinator_memorize_worker_ids

As titled. This is related to T28689868, where the number of blobs we want to create is equal to the number of worker ids

* Add unit test for nets with no type set

* Ignore total length argument in sympolic_pad_packed_sequence

1- There was a mistake in the code that total_length was added to the wrong symbolic function (pack_padded_sequence) instead of (pad_packed_sequence)
2- No need to throw an exception if total_length is given since it is only used to enable data_parallel training on multi-gpus and doesn't have anything to do with onnx export, so just ignore it. https://fburl.com/tk4gciqp

* Add support for MKLDNN to async_scheduling

Just add MKLDNN as a possible CPU option to async_scheduling's pool function

* [AuFL][ensemble] support branch output for prediction

This diff supports using predictions from different branches and thus enables model ensembling (not fully independent).

* Fix a bug in add_loss in layer_model_helper

As titled.

* Support lradaption for adam

1.lr adaption operator
2.apply to dense adam

* Perf tweaks for async_scheduling

Restore single pool option + remove unnecessary (no-ops) calls

* add quantization to SparseSimdAdagradOp

add a bunch of quantization signatures to SparseSimdAdagradOp, implementations to come next

* [sr] [codemod] Change all SR callsites to use new API

@allow-large-files

This diff refactors all callsites of SR to use the slightly changed API introduced in the diff below. Really what this means is that you need to include the correct header. Also if you were using `ClientFactory::newFactory` you need to not prefix it with `ClientFactory::`.

```
cd ~/fbsource/fbcode
find ./ -type f -exec sed -i -e 's:#include "servicerouter/client/cpp2/ClientFactory.h":#include "servicerouter/client/cpp2/ServiceRouter.h":' -e 's:#include <servicerouter/client/cpp2/ClientFactory.h>:#include <servicerouter/client/cpp2/ServiceRouter.h>:' -e 's/ClientFactory::newFactory(/newFactory(/g' {} \;
```

Also manually fixed spots that couldn't be done automatically (or broke because they depended on transitive includes).

* Back out "Fix handling of empty batches in SumReduceDimsOp"

Original commit changeset: 282da1730cc2 This commit is blocking the
Github->fbcode sync, which really needs to get merged ASAP. D7881937 which this
diff depends on will be reverted in the sync D7990948 which causes this to
break. The sync diff cannot be patched with this reversion because it must be
landed against base revision 5c8c099 , and D7881937 must not be included in the
sync diff because it is breaking GPU tests that are not available in sandcastle
: https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-cuda8.0-cudnn6-ubuntu16.04-test/3638/console
for one example.

* Add the flow to support operator benchmark

1) generate model with the operator 2) upload to everstore 3) generate model spec into json file 4) start running the benchmark

* [tum][gpu] Connect DPM trainer with flow and unit tests

This diff:
- Fix some small bugs for Yiming's recent changes to parallelizer, so it suits real use cases.
- Add correct tags to the TUM code, so we can do data parallel transform
- pass extra info when instantiation.
- add unit test for using DPM in TUM model

After this diff, we can do simple box, multi-gpu fully-sync trainer for TUM in Fblearner workflow, but may still need to do speed benchmarking.

* w/o normalized lradaption for adam dense only

The previous lr adaption includes a normalization step when performing the dot product operation. This is not exactly same as what is proposed in the paper. I add normalization as an option. Without it, the operator performs exactly what the paper proposed. With the option, we add the normalization step

* [fb] Use SharedPromise in DeferrableAsyncSchedulingNet

This code is to simplify DeferrableAsyncSchedulingNet by removing condition
variable + small fixes

* [tum] implement cuda sparseLengthsMean and LengthsMean

as title

* Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

* Move feature_to_index to FeatureSpec.feature_to_index

move feature_to_index to FeatureSpec.feature_to_index to avoid override other fields

* [Caffe2] Rename bytes_moved to bytes_written

Just a rename in preparation for supporting bytes_read.

* [c2] fix ReduceFrontSumOp for empty case by setting 0

otherwise, it may use the results from last iteration when it's empty batch.

* [Caffe2] [Int8] Improve Intel CPU performance

* [Easy] Improve PrependDim op logging

as titled

* DBFileReader expand db_path using os.path.expanduser(..)

Since there are a lot of possible use cases of `DBFileReader` to read from user home path, like `~/local/sample.db`, I want to save people's trouble of calling `os.path.expanduser(db_path)` themselves.

* [Caffe2] Add bytes_read to cost structure

We're adding analytical read bytes to cost functions.  This extends the structure accordingly for all CostInference defined operators.
Additionally, some small bug fixes were performed:
1) Cost functions now extract type information of operands instead of assuming float

* Fix sleef on aarch64 for hhvm

@bypass-lint

Rename flag

* Remove duplicated part in caffe2/ideep/operators/conv_op.cc

should be sync error

* Rename test helper function test_adagrad_sparse_helper to adagrad_sparse_test_helper to avoid confusing pytest
2018-05-19 23:10:48 -07:00
Yinghai Lu
ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00
Paul Jesse Hellemn
771fcb3455 [caffe2] Fbcode to GitHub sync (#6208)
* [easy] allow empty tensor in cuda relu op

The diff has not enabled unit test of empty tensor, because MLKVersion of ReluOp need extra work to support

* Make blob norm plotting work with distributed trainer when the old framework is used
2018-04-02 16:35:27 -07:00
Xiaolong Wang
d6c30ee6af [GanH]: Unifying two discriminators
to improve the flexibility and combines different discriminators in one model.
2018-03-27 18:10:39 -07:00
Xianjie Chen
078b6d5ad1 [layer model] remove duplicated init ops
it saves some model init time, and reduce confusion.
2018-03-27 18:10:39 -07:00
Jiyan Yang
8fa38f8dce Add gradient clipping (#2452)
As titled.
2018-03-27 15:10:15 -07:00
Orion Reblitz-Richardson
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
Wei Zhang
e0e334793c Revert D7219461: Mark full sync data parallel ops with rules
This reverts commit 79c56ec5859e25c7caec7bb6b79e80dd19307c64
2018-03-20 13:34:22 -07:00
Wei Zhang
9edbafe0de Mark full sync data parallel ops with rules
Instead of using hard-coded rules or rely on gpu_strategy to mark full sync data parallel ops, we need some generic rules that is applicable to both the single and distributed setting.
2018-03-20 13:34:22 -07:00
Kittipat Virochsiri
72f2cd8bcc Making preproc_output_schema explicit
Make it easier to plug in intermediate steps between preprocessing & trainer by maintaining a stable schema.

I also fixed enqueue() so that we can pass in the same blob in multiple location without causing data corruption.
2018-03-20 13:34:22 -07:00
sf-wind
602a09dde7 Update caffe2 from facebook 4f527ef46abf (#2234)
* [GanH]: two_task_discriminator

as titled

and adding label smooth

* [Dper2] Simplified UI options needed for blob magnitude visualization

* [GanH]: fix tags

as titled

* Added type and shape inference for GatherRange operator

This helps with type / shape inference when using this operator in layers.
Also just a nice to have in general.

* Demonstrate Caffe2 exception handling with StoreHandlerTimeoutError in Python

We'd like to catch and recover from certain Caffe2 net exceptions. Use this diff to demonstrate a pattern of registering a pybind exception mapping and catching in Pythonusing caffe2::StoreHandlerTimeoutException.

* Bind Gloo IoException to IoError in Python

Allow peer failure handling and recovery using an exception based mechanism. This diff registers gloo::IoException with pybind.

* [GanH]: add label smoothing to softmax with loss

as titled

* [C2] Enable LARS in Adagrad and hook it to DPER

* [DPER] Don't pass LayerModelHelper in create_trainer_nodes

Since we're planning to get rid of it eventually and I want to get access to
NetDef only interface ASAP - I'm looking towards removing all references to
LMH, where we don't really need them.

* fix bugs in LambdaRankNdcgOp

the loss and gradient in LambdaRankNdcgOp are incorrect. The loss should be negative log of probs instead of log.

* Restrict thread pool on iOS to only big cores

Historically, iPhones exposed only one type of cores, and Caffe2 thread pool used all of them.
However, iPhone 8/iPhone X exposes 2 big + 4 LITTLE cores. As our thread pool doesn't support work stealing or other forms of load balancing, fast cores end up waiting for the slow ones, and it may be better to restrict execution to only 2 fast cores, like we do on Android.

* Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine

Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine

* make clang happy and get fewer warnings

make clang happy and get fewer warnings

* [Personalization] Support add_output_schema() in layer_model_helper

Problem:
Currently the output_schema of sparse_nn can only be set once. https://fburl.com/efth5zer.

Solution:
For flexibility, we want to add fields to output_schema incrementally.

Plan:
Wrap the change of `model._output_schema` into a new function `add_output_schema()` for adding additional output_schema.

Callsite:
The add_output_schema() should be called instead at https://fburl.com/efth5zer

Reference:
The newly added `add_output_schema()` will be similar to `add_loss()` in https://fburl.com/t2ii8njh
2018-03-12 12:22:59 -07:00
Jiyan Yang
f4b1e8b334 [Dper2] Add NetModifier abstraction and support for plotting the norm of blobs (#2201) 2018-03-08 13:41:32 -08:00
Dmytro Dzhulgakov
16ba087b64 [oncall]fix unittest dper/layer_models/tests:utils_test
as titled -- fix offending diff D7091725 due to added debug_info in operator
proto
2018-03-06 00:33:11 -08:00
Yan Zhu
0a66c76a4c detailed error output for parameter sharing
Reviewed By: xianjiec

Differential Revision: D6986239

fbshipit-source-id: 5b8bb06ea2383ce64318b5322bda7a58469f3eb0
2018-02-14 11:10:51 -08:00
Yan Shang
fd28e0fa29 Add bool function to return whether a model contains loss
Summary:
Add a function to return true if the model contains loss and retuen
false if the model doesn't include a loss.

Reviewed By: kittipatv

Differential Revision: D6982444

fbshipit-source-id: 1f63b7a1eaa3077841a0ad5d8d854b471d0aa84c
2018-02-13 16:38:36 -08:00
Kittipat Virochsiri
83c494787d Allow adding to trainer_extra_schema
Summary: Sometimes we need to add some extra schema later

Reviewed By: sunnieshang

Differential Revision: D6951849

fbshipit-source-id: 564eb88f9250eae24869fd10ba3426e00a18af33
2018-02-13 14:40:36 -08:00
Lin Yang
3acce3e4a7 assert global_constant name as string
Reviewed By: kennyhorror

Differential Revision: D6895157

fbshipit-source-id: 9844ab6176d22c6d05a5a0f83b731f734ef9853d
2018-02-04 01:02:30 -08:00
Xiaolong Wang
f8575f6d68 Breakdown Dispatcher
Summary: dispatch by Ngram breakdown

Differential Revision: D6794082

fbshipit-source-id: 7f6e8fa3a0abe0dc6d0d466c95e8c4fc865e3abb
2018-01-26 17:47:54 -08:00
Dániel Simig
2dd79eb53a Visualize distribution of activation functions
Summary:
This is a  first attempt at completing bootcamp task T24449916. This diff contains 3 major changes:
1) Change LayerModelHelper to allow for exposing the output and parameters of any layer to metrics
2) Added a runner that allows metrics to draw arbitrary plots to a matplotlib axes object
3) Implement a metric that aggregates distributions of values in a blob over the training, and try this out in a notebook

Reviewed By: kennyhorror

Differential Revision: D6671273

fbshipit-source-id: b8961837395e89c957edbf5c7c862bdb845ccf4b
2018-01-23 10:36:40 -08:00
Xue Feng
dda33ca53a enable setting model initialization seed
Summary: This diff enables setting model initialization seed, instead of random seed, when reproducible restults are desired.

Reviewed By: xianjiec

Differential Revision: D6642971

fbshipit-source-id: 387b1ee2ecef4f8f66570c882498fb97d7007e17
2018-01-11 14:04:03 -08:00
Yan Shang
41bb662d96 add dense regularization
Reviewed By: xianjiec

Differential Revision: D5617571

fbshipit-source-id: 875d7c8753bdb3b6847d5e3f47ad8568cdf172f8
2018-01-08 13:03:17 -08:00
Xiaolong Wang
7315a19bc9 add maybe_add_global_constant
Summary:
In layer model helper, add a method `maybe_add_global_constant` to ensure
that when two global constants are added with the same name, we check if they
are actually the same (by initializer) and only add it once.

Reviewed By: kennyhorror

Differential Revision: D6537532

fbshipit-source-id: 37aa3860a2e40d81161ccdea0c50a316248be2e2
2017-12-18 22:14:00 -08:00
Liang Xiong
fc0c8c2316 minor refactoring in dper
Summary: small changes as I was reading through the dper code base. all of them are nits, but somewhat helped me understanding things.

Reviewed By: xianjiec

Differential Revision: D6389380

fbshipit-source-id: 3412052e4fcba199c6ffc84c6f7ae11bf8ff6ee9
2017-11-21 18:12:49 -08:00
Yan Shang
24e83acbb9 Enable sampling in evaluation
Reviewed By: chocjy

Differential Revision: D6119768

fbshipit-source-id: c8447326008392df70ab10b04f84223cf6d882b1
2017-11-16 14:03:51 -08:00
Jiyan Yang
ee3baa2ed4 Add shape checks and print more info in parameter sharing
Summary: As titled.

Reviewed By: kittipatv

Differential Revision: D6145747

fbshipit-source-id: 39a212bb6bebbbf3164cade2f95db22ddb2d2c87
2017-10-27 01:22:06 -07:00
Dmytro Dzhulgakov
2972a6ca02 Revert D6026557: [caffe2][PR] Fix "No handlers could be found for logger"
Summary:
This reverts commit 95c634872ac02be721257169e38c8fead04cd66b

bypass-lint

Differential Revision: D6026557

fbshipit-source-id: 663c28583ce3b01070ff5449115ed7e222f71776
2017-10-12 20:21:52 -07:00
Luke Yeager
75bece6ede Fix "No handlers could be found for logger"
Summary: Closes https://github.com/caffe2/caffe2/pull/1316

Differential Revision: D6026557

Pulled By: Yangqing

fbshipit-source-id: 95c634872ac02be721257169e38c8fead04cd66b
2017-10-10 22:32:13 -07:00