mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
* Fix handling of empty batches in SumReduceDimsOp As titled * Deferrable async_scheduling finishRun fix Proper order of finishing run operations in deferrable_async_scheduling net * Simplify exception handling in async_scheduling Simplify exception handling, no need to busy wait, thread that processes the last task can finish the run * [C2]worker_coordinator_memorize_worker_ids As titled. This is related to T28689868, where the number of blobs we want to create is equal to the number of worker ids * Add unit test for nets with no type set * Ignore total length argument in sympolic_pad_packed_sequence 1- There was a mistake in the code that total_length was added to the wrong symbolic function (pack_padded_sequence) instead of (pad_packed_sequence) 2- No need to throw an exception if total_length is given since it is only used to enable data_parallel training on multi-gpus and doesn't have anything to do with onnx export, so just ignore it. https://fburl.com/tk4gciqp * Add support for MKLDNN to async_scheduling Just add MKLDNN as a possible CPU option to async_scheduling's pool function * [AuFL][ensemble] support branch output for prediction This diff supports using predictions from different branches and thus enables model ensembling (not fully independent). * Fix a bug in add_loss in layer_model_helper As titled. * Support lradaption for adam 1.lr adaption operator 2.apply to dense adam * Perf tweaks for async_scheduling Restore single pool option + remove unnecessary (no-ops) calls * add quantization to SparseSimdAdagradOp add a bunch of quantization signatures to SparseSimdAdagradOp, implementations to come next * [sr] [codemod] Change all SR callsites to use new API @allow-large-files This diff refactors all callsites of SR to use the slightly changed API introduced in the diff below. Really what this means is that you need to include the correct header. Also if you were using `ClientFactory::newFactory` you need to not prefix it with `ClientFactory::`. ``` cd ~/fbsource/fbcode find ./ -type f -exec sed -i -e 's:#include "servicerouter/client/cpp2/ClientFactory.h":#include "servicerouter/client/cpp2/ServiceRouter.h":' -e 's:#include <servicerouter/client/cpp2/ClientFactory.h>:#include <servicerouter/client/cpp2/ServiceRouter.h>:' -e 's/ClientFactory::newFactory(/newFactory(/g' {} \; ``` Also manually fixed spots that couldn't be done automatically (or broke because they depended on transitive includes). * Back out "Fix handling of empty batches in SumReduceDimsOp" Original commit changeset: 282da1730cc2 This commit is blocking the Github->fbcode sync, which really needs to get merged ASAP. D7881937 which this diff depends on will be reverted in the sync D7990948 which causes this to break. The sync diff cannot be patched with this reversion because it must be landed against base revision 5c8c099 , and D7881937 must not be included in the sync diff because it is breaking GPU tests that are not available in sandcastle : https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-cuda8.0-cudnn6-ubuntu16.04-test/3638/console for one example. * Add the flow to support operator benchmark 1) generate model with the operator 2) upload to everstore 3) generate model spec into json file 4) start running the benchmark * [tum][gpu] Connect DPM trainer with flow and unit tests This diff: - Fix some small bugs for Yiming's recent changes to parallelizer, so it suits real use cases. - Add correct tags to the TUM code, so we can do data parallel transform - pass extra info when instantiation. - add unit test for using DPM in TUM model After this diff, we can do simple box, multi-gpu fully-sync trainer for TUM in Fblearner workflow, but may still need to do speed benchmarking. * w/o normalized lradaption for adam dense only The previous lr adaption includes a normalization step when performing the dot product operation. This is not exactly same as what is proposed in the paper. I add normalization as an option. Without it, the operator performs exactly what the paper proposed. With the option, we add the normalization step * [fb] Use SharedPromise in DeferrableAsyncSchedulingNet This code is to simplify DeferrableAsyncSchedulingNet by removing condition variable + small fixes * [tum] implement cuda sparseLengthsMean and LengthsMean as title * Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function. Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function. * Move feature_to_index to FeatureSpec.feature_to_index move feature_to_index to FeatureSpec.feature_to_index to avoid override other fields * [Caffe2] Rename bytes_moved to bytes_written Just a rename in preparation for supporting bytes_read. * [c2] fix ReduceFrontSumOp for empty case by setting 0 otherwise, it may use the results from last iteration when it's empty batch. * [Caffe2] [Int8] Improve Intel CPU performance * [Easy] Improve PrependDim op logging as titled * DBFileReader expand db_path using os.path.expanduser(..) Since there are a lot of possible use cases of `DBFileReader` to read from user home path, like `~/local/sample.db`, I want to save people's trouble of calling `os.path.expanduser(db_path)` themselves. * [Caffe2] Add bytes_read to cost structure We're adding analytical read bytes to cost functions. This extends the structure accordingly for all CostInference defined operators. Additionally, some small bug fixes were performed: 1) Cost functions now extract type information of operands instead of assuming float * Fix sleef on aarch64 for hhvm @bypass-lint Rename flag * Remove duplicated part in caffe2/ideep/operators/conv_op.cc should be sync error * Rename test helper function test_adagrad_sparse_helper to adagrad_sparse_test_helper to avoid confusing pytest
632 lines
23 KiB
Python
632 lines
23 KiB
Python
## @package layer_model_helper
|
|
# Module caffe2.python.layer_model_helper
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, model_helper, schema, scope, utils
|
|
from caffe2.python.modeling.parameter_info import (
|
|
ParameterInfo,
|
|
)
|
|
from caffe2.python.modeling.parameter_sharing import (
|
|
parameter_sharing_context,
|
|
)
|
|
from caffe2.python.modeling.net_modifier import NetModifier
|
|
|
|
from caffe2.python.optimizer import get_param_device
|
|
from caffe2.python.regularizer import Regularizer
|
|
from caffe2.python.layers import layers
|
|
from caffe2.proto import caffe2_pb2
|
|
from future.utils import viewitems, viewvalues
|
|
|
|
import logging
|
|
import numpy as np
|
|
import six
|
|
import copy
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LayerModelHelper(model_helper.ModelHelper):
|
|
"""
|
|
Model helper for building models on top of layers abstractions.
|
|
|
|
Each layer is the abstraction that is higher level than Operator. Layer
|
|
is responsible for ownership of it's own parameters and can easily be
|
|
instantiated in multiple nets possible with different sets of ops.
|
|
As an example: one can easily instantiate predict and train nets from
|
|
the same set of layers, where predict net will have subset of the
|
|
operators from train net.
|
|
"""
|
|
|
|
def __init__(self, name, input_feature_schema, trainer_extra_schema,
|
|
keep_blobs=False):
|
|
''' TODO(amalevich): more documnetation on input args
|
|
'''
|
|
|
|
super(LayerModelHelper, self).__init__(name=name)
|
|
self._layer_names = set()
|
|
self._layers = []
|
|
self._param_to_shape = {}
|
|
|
|
# seed default
|
|
self._seed = None
|
|
self._sequence_seed = True
|
|
|
|
# optimizer bookkeeping
|
|
self.param_to_optim = {}
|
|
self.param_to_reg = {}
|
|
|
|
self._default_optimizer = None
|
|
self._loss = None
|
|
self._prediction = []
|
|
self._output_schema = None
|
|
|
|
self._post_grad_net_modifiers = []
|
|
self._final_net_modifiers = []
|
|
|
|
# breakdown map; breakdown features are categorical (like dense) but not
|
|
# necessarily used to represent data for training
|
|
self._breakdown_map = None
|
|
|
|
# Connect Schema to self.net. That particular instance of schmea will be
|
|
# use for generation of the Layers accross the network and would be used
|
|
# for connection with Readers.
|
|
self._input_feature_schema = schema.NewRecord(
|
|
self.net,
|
|
input_feature_schema
|
|
) if not keep_blobs else input_feature_schema.clone()
|
|
self._trainer_extra_schema = schema.NewRecord(
|
|
self.net,
|
|
trainer_extra_schema
|
|
) if not keep_blobs else trainer_extra_schema.clone()
|
|
self._metrics_schema = schema.Struct()
|
|
|
|
self._preproc_output_schema = None
|
|
|
|
self._init_global_constants()
|
|
self.param_init_net = self.create_init_net('param_init_net')
|
|
self._initialize_params = True
|
|
|
|
# additional (hard-coded) diagnose_options to report based on the model
|
|
# TODO(xlwang): it's hack!
|
|
self.ad_hoc_diagnose_blobs_and_operations = []
|
|
|
|
def clear_output_schema(self):
|
|
self._output_schema = None
|
|
|
|
def set_initialize_params(self, initialize_params):
|
|
self._initialize_params = initialize_params
|
|
|
|
def add_metric_field(self, name, value):
|
|
assert name not in self._metrics_schema.fields, (
|
|
"Try to add metric field twice: {}".format(name))
|
|
self._metrics_schema = self._metrics_schema + schema.Struct(
|
|
(name, value)
|
|
)
|
|
|
|
@staticmethod
|
|
def _get_global_constant_initializer_op(
|
|
blob_name, array=None, dtype=None, initializer=None
|
|
):
|
|
# to add a global constant to model, one first need to get the
|
|
# initializer
|
|
if array is not None:
|
|
assert initializer is None,\
|
|
"Only one from array and initializer should be specified"
|
|
if dtype is None:
|
|
array = np.array(array)
|
|
else:
|
|
array = np.array(array, dtype=dtype)
|
|
|
|
# TODO: make GivenTensor generic
|
|
op_name = None
|
|
if array.dtype == np.int32:
|
|
op_name = 'GivenTensorIntFill'
|
|
elif array.dtype == np.int64:
|
|
op_name = 'GivenTensorInt64Fill'
|
|
elif array.dtype == np.str:
|
|
op_name = 'GivenTensorStringFill'
|
|
elif array.dtype == np.bool:
|
|
op_name = 'GivenTensorBoolFill'
|
|
else:
|
|
op_name = 'GivenTensorFill'
|
|
|
|
def initializer(blob_name):
|
|
return core.CreateOperator(
|
|
op_name, [],
|
|
blob_name,
|
|
shape=array.shape,
|
|
values=array.flatten().tolist()
|
|
)
|
|
else:
|
|
assert initializer is not None
|
|
initializer_op = initializer(blob_name)
|
|
return initializer_op
|
|
|
|
def add_global_constant(
|
|
self, name, array=None, dtype=None, initializer=None
|
|
):
|
|
assert isinstance(name, six.string_types), (
|
|
'name should be a string as we are using it as map key')
|
|
# This is global namescope for constants. They will be created in all
|
|
# init_nets and there should be very few of them.
|
|
assert name not in self.global_constants, \
|
|
"%s already added in global_constants" % name
|
|
blob_name = self.net.NextBlob(name)
|
|
self.global_constants[name] = blob_name
|
|
initializer_op = LayerModelHelper._get_global_constant_initializer_op(
|
|
blob_name, array, dtype, initializer
|
|
)
|
|
assert blob_name not in self.global_constant_initializers, \
|
|
"there is already a initializer op associated with blob %s" % \
|
|
blob_name
|
|
self.global_constant_initializers[blob_name] = initializer_op
|
|
return blob_name
|
|
|
|
def maybe_add_global_constant(self, name, *args, **kwargs):
|
|
# To ad hoc add new global constants without duplication
|
|
# if the name was already registered in global_constants, it will not be
|
|
# added even if the intended value is different from its original value
|
|
|
|
if name in self.global_constants:
|
|
blob_name = self.global_constants[name]
|
|
initializer_op = \
|
|
LayerModelHelper._get_global_constant_initializer_op(
|
|
blob_name, *args, **kwargs
|
|
)
|
|
# check if the original initializer is the same as the one intended
|
|
# now
|
|
assert utils.OpAlmostEqual(
|
|
initializer_op,
|
|
self.global_constant_initializers[blob_name],
|
|
'debug_info'
|
|
), \
|
|
"conflict initializers for global constant %s, " \
|
|
"previous %s, now %s" % (
|
|
blob_name, str(initializer_op),
|
|
str(self.global_constant_initializers[blob_name]))
|
|
return blob_name
|
|
return self.add_global_constant(name, *args, **kwargs)
|
|
|
|
def _init_global_constants(self):
|
|
self.global_constants = {}
|
|
self.global_constant_initializers = {}
|
|
self.add_global_constant('ONE', 1.0)
|
|
self.add_global_constant('ZERO', 0.0)
|
|
self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32')
|
|
|
|
def _add_global_constants(self, init_net):
|
|
for initializer_op in viewvalues(self.global_constant_initializers):
|
|
init_net._net.op.extend([initializer_op])
|
|
|
|
def create_init_net(self, name):
|
|
init_net = core.Net(name)
|
|
self._add_global_constants(init_net)
|
|
return init_net
|
|
|
|
def _validate_param_shape(self, param_name, shape):
|
|
if param_name not in self._param_to_shape:
|
|
return
|
|
|
|
ref_shape = self._param_to_shape[param_name]
|
|
|
|
if shape != ref_shape:
|
|
raise ValueError(
|
|
"Got inconsistent shapes between shared parameters "
|
|
"when trying to map a blob in scope {0} to {1}. ref_shape : "
|
|
" {2}, shape : {3}".format(
|
|
scope.CurrentNameScope(), param_name, ref_shape, shape)
|
|
)
|
|
|
|
def create_param(self, param_name, shape, initializer, optimizer=None,
|
|
ps_param=None, regularizer=None):
|
|
if isinstance(param_name, core.BlobReference):
|
|
param_name = str(param_name)
|
|
elif isinstance(param_name, six.string_types):
|
|
# Parameter name will be equal to current Namescope that got
|
|
# resolved with the respect of parameter sharing of the scopes.
|
|
param_name = parameter_sharing_context.get_parameter_name(
|
|
param_name)
|
|
else:
|
|
raise "Unsupported type for param_name"
|
|
|
|
param_blob = core.BlobReference(param_name)
|
|
|
|
if len(initializer) == 1:
|
|
init_op_args = {}
|
|
else:
|
|
assert len(initializer) == 2
|
|
init_op_args = copy.deepcopy(initializer[1])
|
|
if shape is not None:
|
|
assert 'shape' not in init_op_args
|
|
init_op_args.update({'shape': shape})
|
|
|
|
initializer_op = None
|
|
if self._initialize_params:
|
|
initializer_op = core.CreateOperator(
|
|
initializer[0],
|
|
[],
|
|
param_blob,
|
|
**init_op_args
|
|
)
|
|
|
|
param = layers.LayerParameter(
|
|
parameter=param_blob,
|
|
initializer=initializer_op,
|
|
optimizer=optimizer,
|
|
ps_param=ps_param,
|
|
regularizer=regularizer
|
|
)
|
|
|
|
self._validate_param_shape(param_name, shape)
|
|
|
|
self._param_to_shape[param_name] = shape
|
|
|
|
return param
|
|
|
|
def next_layer_name(self, prefix):
|
|
base_name = core.ScopedName(prefix)
|
|
name = base_name
|
|
index = 0
|
|
while name in self._layer_names:
|
|
name = base_name + '_auto_' + str(index)
|
|
index += 1
|
|
|
|
self._layer_names.add(name)
|
|
return name
|
|
|
|
def add_layer(self, layer):
|
|
self._layers.append(layer)
|
|
for param in layer.get_parameters():
|
|
assert isinstance(param.parameter, core.BlobReference)
|
|
|
|
self.param_to_optim[str(param.parameter)] = \
|
|
param.optimizer or self.default_optimizer
|
|
|
|
self.params.append(param.parameter)
|
|
if isinstance(param, layers.LayerParameter):
|
|
self.param_to_reg[param.parameter] = param.regularizer
|
|
elif isinstance(param, ParameterInfo):
|
|
# TODO:
|
|
# Currently, LSTM and RNNcells, which use ModelHelper instead of
|
|
# LayerModelHelper as super class, are called in pooling_methods
|
|
# In ModelHelper, regularization is not supported in create_param
|
|
# We will unify the way of create_param of ModelHelper and
|
|
# LayerModelHelper in the future.
|
|
logger.info('regularization is unsupported for ParameterInfo object')
|
|
else:
|
|
raise ValueError(
|
|
'unknown object type besides ParameterInfo and LayerParameter: {}'
|
|
.format(param)
|
|
)
|
|
|
|
# The primary value of adding everything to self.net - generation of the
|
|
# operators right away, i.e. if error happens it'll be detected
|
|
# immediately. Other than this - create_x_net should be called.
|
|
layer.add_operators(self.net, self.param_init_net)
|
|
return layer.output_schema
|
|
|
|
def get_parameter_blobs(self):
|
|
param_blobs = []
|
|
for layer in self._layers:
|
|
for param in layer.get_parameters():
|
|
param_blobs.append(param.parameter)
|
|
|
|
return param_blobs
|
|
|
|
def add_post_grad_net_modifiers(self, modifier):
|
|
assert modifier not in self._post_grad_net_modifiers,\
|
|
"{0} is already in {1}".format(modifier, self._post_grad_net_modifiers)
|
|
assert isinstance(modifier, NetModifier),\
|
|
"{} has to be a NetModifier instance".format(modifier)
|
|
self._post_grad_net_modifiers.append(modifier)
|
|
|
|
def add_final_net_modifiers(self, modifier):
|
|
assert modifier not in self._final_net_modifiers,\
|
|
"{0} is already in {1}".format(modifier, self._final_net_modifiers)
|
|
assert isinstance(modifier, NetModifier),\
|
|
"{} has to be a NetModifier instance".format(modifier)
|
|
self._final_net_modifiers.append(modifier)
|
|
|
|
@property
|
|
def seed(self):
|
|
return self._seed
|
|
|
|
@property
|
|
def sequence_seed(self):
|
|
return self._sequence_seed
|
|
|
|
def store_seed(self, seed, sequence_seed=True):
|
|
# Store seed config that will be applied to each op in the net.
|
|
self._seed = seed
|
|
# If sequence_seed is True, the i-th op has rand_seed=`seed + i`
|
|
self._sequence_seed = sequence_seed
|
|
|
|
def apply_seed(self, net):
|
|
if self._seed:
|
|
net.set_rand_seed(self._seed, self._sequence_seed)
|
|
|
|
@property
|
|
def default_optimizer(self):
|
|
return self._default_optimizer
|
|
|
|
@default_optimizer.setter
|
|
def default_optimizer(self, optimizer):
|
|
self._default_optimizer = optimizer
|
|
|
|
@property
|
|
def input_feature_schema(self):
|
|
return self._input_feature_schema
|
|
|
|
@property
|
|
def trainer_extra_schema(self):
|
|
return self._trainer_extra_schema
|
|
|
|
@property
|
|
def metrics_schema(self):
|
|
"""
|
|
Returns the schema that represents model output that should be used for
|
|
metric reporting.
|
|
|
|
During the training/evaluation this schema will be appended to the
|
|
schema that represents model output.
|
|
"""
|
|
return self._metrics_schema
|
|
|
|
@property
|
|
def output_schema(self):
|
|
assert self._output_schema is not None
|
|
return self._output_schema
|
|
|
|
@output_schema.setter
|
|
def output_schema(self, schema):
|
|
assert self._output_schema is None
|
|
self._output_schema = schema
|
|
|
|
@property
|
|
def preproc_output_schema(self):
|
|
assert self._preproc_output_schema is not None
|
|
return self._preproc_output_schema
|
|
|
|
@preproc_output_schema.setter
|
|
def preproc_output_schema(self, schema):
|
|
assert self._preproc_output_schema is None
|
|
self._preproc_output_schema = schema
|
|
|
|
@property
|
|
def prediction(self):
|
|
assert self._prediction, "model prediction is empty"
|
|
return self._prediction
|
|
|
|
def add_prediction(self, prediction, weight=1.0):
|
|
assert prediction is not None, "Added prediction should not be None"
|
|
self._prediction.append((prediction, weight))
|
|
|
|
@property
|
|
def loss(self):
|
|
assert self._loss is not None
|
|
return self._loss
|
|
|
|
@loss.setter
|
|
def loss(self, loss):
|
|
assert self._loss is None
|
|
self._loss = loss
|
|
|
|
def has_loss(self):
|
|
return self._loss is not None
|
|
|
|
def add_loss(self, loss, name='unnamed'):
|
|
assert loss is not None, "Added loss should not be None"
|
|
assert isinstance(loss, schema.Scalar) or isinstance(
|
|
loss, schema.Struct
|
|
), "Added loss should be a scalar or a struct"
|
|
if self._loss is None:
|
|
self._loss = schema.Struct((name, loss))
|
|
else:
|
|
# loss could've been set through model.loss directly which could be
|
|
# a scalar
|
|
if isinstance(self._loss, schema.Scalar):
|
|
self._loss = schema.Struct(('unnamed', self._loss))
|
|
|
|
prefix_base = name + '_auto_'
|
|
index = 0
|
|
prefix = name
|
|
while prefix in self._loss:
|
|
prefix = prefix_base + str(index)
|
|
index += 1
|
|
loss_struct = schema.Struct((prefix, loss))
|
|
self._loss = self._loss + loss_struct
|
|
|
|
def add_output_schema(self, name, value):
|
|
assert value is not None, \
|
|
'Added output schema {} should not be None'.format(name)
|
|
assert isinstance(value, schema.Scalar) or \
|
|
isinstance(value, schema.Struct), \
|
|
'Added output schema {} should be a scalar or a struct.\n\
|
|
Now it is {}.'.format(name, type(value))
|
|
if self._output_schema is None: # be the first field
|
|
self._output_schema = schema.Struct((name, value))
|
|
else: # merge with other fields
|
|
assert name not in self._output_schema.fields, \
|
|
'Output Schema Field {} already exists'.format(name)
|
|
self._output_schema = \
|
|
self._output_schema + schema.Struct((name, value))
|
|
|
|
def add_trainer_extra_schema(self, trainer_extra_schema):
|
|
trainer_extra_record = schema.NewRecord(self.net, trainer_extra_schema)
|
|
self._trainer_extra_schema += trainer_extra_record
|
|
|
|
def __getattr__(self, layer):
|
|
def is_functional_layer(layer):
|
|
if core.IsOperator(layer):
|
|
return True
|
|
elif layer.startswith('FunctionalLayer'):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def resolve_functional_layer(layer):
|
|
if core.IsOperator(layer):
|
|
return layer
|
|
elif layer.startswith('FunctionalLayer'):
|
|
return layer[len('FunctionalLayer'):]
|
|
else:
|
|
raise ValueError(
|
|
'%s cannot be resolved as functional layer' % layer
|
|
)
|
|
|
|
if layer.startswith('__'):
|
|
raise AttributeError(layer)
|
|
|
|
# TODO(amalevich): Add add support for ifbpy inline documentation
|
|
if layers.layer_exists(layer):
|
|
def wrapper(*args, **kwargs):
|
|
new_layer = layers.create_layer(layer, self, *args, **kwargs)
|
|
if kwargs.get("output_to_metrics", False):
|
|
new_layer.export_output_for_metrics()
|
|
if kwargs.get("params_to_metrics", False):
|
|
new_layer.export_params_for_metrics()
|
|
return self.add_layer(new_layer)
|
|
return wrapper
|
|
elif is_functional_layer(layer):
|
|
# TODO(xlwang): Desginated layer shadows the usage of an op as a
|
|
# single layer. To enforce using an op (e.g. Split) as functional
|
|
# layer, one can call 'model.FunctionalLayerSplit'
|
|
layer = resolve_functional_layer(layer)
|
|
def wrapper(*args, **kwargs):
|
|
def apply_operator(net, in_record, out_record, **kwargs):
|
|
# TODO(amalevich): Switch to net.operator as soon as it gets
|
|
# landed
|
|
net.__getattr__(layer)(in_record.field_blobs(),
|
|
out_record.field_blobs(),
|
|
**kwargs)
|
|
|
|
if 'name' not in kwargs:
|
|
kwargs['name'] = layer
|
|
|
|
new_layer = layers.create_layer(
|
|
'Functional',
|
|
self, *args, function=apply_operator,
|
|
**kwargs
|
|
)
|
|
|
|
if kwargs.get("output_to_metrics", False):
|
|
new_layer.export_output_for_metrics()
|
|
if kwargs.get("params_to_metrics", False):
|
|
new_layer.export_params_for_metrics()
|
|
|
|
return self.add_layer(new_layer)
|
|
return wrapper
|
|
else:
|
|
raise ValueError(
|
|
"Trying to create non-registered layer: {}".format(layer))
|
|
|
|
@property
|
|
def layers(self):
|
|
return self._layers
|
|
|
|
def apply_regularizers_on_loss(
|
|
self,
|
|
train_net,
|
|
train_init_net,
|
|
blob_to_device=None,
|
|
):
|
|
for param, regularizer in viewitems(self.param_to_reg):
|
|
if regularizer is None or regularizer.apply_after_optimizer:
|
|
continue
|
|
assert isinstance(regularizer, Regularizer)
|
|
added_loss_blob = regularizer(train_net, train_init_net, param)
|
|
self.add_loss(
|
|
schema.Scalar(blob=added_loss_blob),
|
|
str(added_loss_blob)
|
|
)
|
|
|
|
def apply_regularizers_after_optimizer(
|
|
self,
|
|
train_net,
|
|
train_init_net,
|
|
grad_map,
|
|
blob_to_device=None,
|
|
):
|
|
for param, regularizer in viewitems(self.param_to_reg):
|
|
if regularizer is None or not regularizer.apply_after_optimizer:
|
|
continue
|
|
assert isinstance(regularizer, Regularizer)
|
|
regularizer(
|
|
train_net, train_init_net, param, grad_map.get(str(param)))
|
|
|
|
def apply_post_grad_net_modifiers(
|
|
self,
|
|
trainer_net,
|
|
trainer_init_net,
|
|
grad_map,
|
|
blob_to_device=None,
|
|
modify_output_record=False,
|
|
):
|
|
param_grad_map = {param: grad_map[param]
|
|
for param in self.param_to_optim.keys() if param in grad_map}
|
|
|
|
for modifier in self._post_grad_net_modifiers:
|
|
modifier(trainer_net, trainer_init_net, param_grad_map,
|
|
blob_to_device=blob_to_device,
|
|
modify_output_record=modify_output_record)
|
|
|
|
def apply_final_net_modifiers(
|
|
self,
|
|
trainer_net,
|
|
trainer_init_net,
|
|
grad_map,
|
|
blob_to_device=None,
|
|
modify_output_record=False,
|
|
):
|
|
for modifier in self._final_net_modifiers:
|
|
modifier(trainer_net, trainer_init_net, grad_map,
|
|
blob_to_device=blob_to_device,
|
|
modify_output_record=modify_output_record)
|
|
|
|
def apply_optimizers(
|
|
self,
|
|
train_net,
|
|
train_init_net,
|
|
grad_map,
|
|
blob_to_device=None,
|
|
):
|
|
CPU = core.DeviceOption(caffe2_pb2.CPU)
|
|
# if given, blob_to_device is a map from blob to device_option
|
|
blob_to_device = blob_to_device or {}
|
|
for param, optimizer in viewitems(self.param_to_optim):
|
|
assert optimizer is not None, \
|
|
"default optimizer must have been set in add_layer"
|
|
# note that not all params has gradient and thus we sent None if
|
|
# gradient does not exists
|
|
device = get_param_device(
|
|
param,
|
|
grad_map.get(str(param)),
|
|
param_to_device=blob_to_device,
|
|
default_device=CPU,
|
|
)
|
|
with core.DeviceScope(device):
|
|
optimizer(
|
|
train_net, train_init_net, param, grad_map.get(str(param)))
|
|
|
|
def _GetOne(self):
|
|
return self.global_constants['ONE']
|
|
|
|
# An optimizer which allows us to do NO optimization
|
|
def NoOptim(self, *args, **kwargs):
|
|
pass
|
|
|
|
@property
|
|
def breakdown_map(self):
|
|
return self._breakdown_map
|
|
|
|
@breakdown_map.setter
|
|
def breakdown_map(self, breakdown_map):
|
|
# TODO(xlwang): provide more rich feature information in breakdown_map;
|
|
# and change the assertion accordingly
|
|
assert isinstance(breakdown_map, dict)
|
|
assert all(isinstance(k, six.string_types) for k in breakdown_map)
|
|
assert sorted(list(breakdown_map.values())) == range(len(breakdown_map))
|
|
self._breakdown_map = breakdown_map
|