Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25308
Instead of storing a single TensorTypeId in a Tensor, we store a bitset of tensor type IDs in a Tensor, TensorTypeSet. This class comes with some unit tests. This is in preparation for making Variable a TensorTypeId. In order to help flush out places where this makes a semantic difference, we rename `Tensor::type_id()` to `Tensor::type_set()` and smoke out all of the locations where this was semantically meaningful.
Because the new tensor type set is 64-bits, this increases the size of Tensor by a word.
Listing of semantic changes:
* Many TensorImpl related constructors just propagate TensorTypeId to a parent constructor. These are pretty simple to adjust.
* Backend extensions are now in the business of explicitly constructing a TensorTypeSet and then passing it in. This is probably OK for now but when Variable drops, these dispatch IDs may get immediately overwritten to have Variable set.
* `sparseTensorSetToDeviceType` and similar functions previously did an equality test with TensorTypeId, to determine what an appropriate device type is. This equality is now replaced with a set inclusion test. This is valid, under the assumption that we don't ever have weird sets like "this tensor is simultaneously a sparse CPU tensor and a sparse CUDA tensor", which will be true in the short term plan of adding Variable to the dispatch ID.
* `impl::dispatchTypeId` was generally introduced for cases where we legitimately need to convert from `TensorTypeSet -> TensorTypeId` in a dispatch related manner. At the moment, the implementation is trivial, but they will soon be adjusted to handle TLS. I've tried to make these call sites as forwards compatible as possible:
* `checked_tensor_unwrap` and co now use `dispatchTypeId`. When Variable is added to the type set, these will always be called in a context where the Variable type ID is disabled, so we will get the correct underlying tensor type ID.
* Uses of `Backend` in dispatch are now replaced with `TensorTypeSet`. The general heuristic here for whether or not to accept a `TensorTypeId` or `TensorTypeSet` is that we want to make the generated code as simple as possible. It is easier to retrieve a `TensorTypeSet`, so that's a more appropriate API in these cases.
* In some cases, I could not conveniently switch an implementation to the new semantics, because it was blocked on some other refactor. In this case, I introduced `legacyExtractTypeId`, which gives what would be a BC-compatible `TensorTypeSet` to `TensorTypeId` implementation that will continue to report the same values it would have prior to this change. This is **different** from `dispatchTypeId`, because this function does NOT respect TLS; it always ignores Variable type IDs.
* c10 dispatcher tests, which are oblivious to Variable dispatch, use this BC function (actually, they use `extractTypeId`, an overload for Tensor.
* The implementation of `new_*` methods heavily relies on tensor type ID, I chose not to unwind this. PR to refactor this at https://github.com/pytorch/pytorch/pull/25475
* Slicing also relies on tensor type ID, see `torch/csrc/autograd/python_variable_indexing.cpp` (though in some cases in this file, I was able to replace use of tensor type ID with TensorOptions)
* In some cases, there is an equality test on tensor type ID which would be better done by testing "tensor axes". In those cases, I replaced those equality tests with more equality tests.
* Example: `torch/csrc/nn/type_checks.h`
* There is a total punt in `torch/csrc/tensor/python_tensor.cpp` where "instance of" checking is done via dispatch ids. In general, the Variable-ness of a tensor doesn't participate in instanceof testing. It's not entirely clear what to do here.
* Instead of storing `Backend` in `VariableInfo`, we now just store Layout.
c10 dispatcher test updates were done with:
```
:%s/\([^ ]\+\)\.type_id()/extractTypeId(\1)/g
:%s/\([^( ]\+\)->type_id()/extractTypeId(*\1)/g
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25308
Differential Revision: D17092791
Test Plan: sandcastle and ossci
Reviewed By: bwasti
Pulled By: ezyang
fbshipit-source-id: 22207d14fe62dd31ee19cc5011af22e3d9aabb5b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25475
I got sucked into this rabbit hole when I was trying to understand
what I should do with TensorTypeId occurrences in
torch/csrc/utils/tensor_new.cpp. I eventually concluded that all of my problems
were because Tensor.new_empty was hand implemented and not actually a native
function. So I made it a native function.
There are a bunch of other new_* functions which should get this
treatment, but I'm sending out this PR just to show how it can
be done.
The general recipe:
1. Implement a concept of TensorOptions merging (TensorOptions::merge_in).
This represents the notion of taking a tensor, but "overriding" some
of its values with specific overrides. One subtlety here is how
devices get merged; see the comments for what our existing behavior is,
and how I preserve it.
2. Implement new_empty as a native function, using options merging.
3. Add another special case to Python binding generation to treat new_*
similar to *_like (i.e., handle TensorOptions correctly). The logic
here is probably wrong, actually; we should codegen TensorOptions
correctly no matter what happens, but new_empty follows the same
pattern as empty_like so I opted not to touch this code too much.
4. Delete the now defunct manual binding code.
5. Delete manual type annotations that are no longer necessary since
we're going through native.
I didn't handle memory format correctly here. I don't know if this function
should accept memory format; prior memory format patches didn't add support
for memory format to new_like. If we had put memory format in TensorOptions
this wouldn't have been a question.
ghstack-source-id: 89294185
Test Plan: sandcastle & ossci
Differential Revision: D17133000
fbshipit-source-id: 00f4e98bd5174f6fd54e8aba2910ea91824771d9
Summary:
As part of the Variable/Tensor merge, we want to gradually remove call sites of `tensor_data()` and the API itself, and instead uses `variable_data()`. This PR removes the `tensor_data()` call in the tensor_to_numpy conversion path.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22214
Differential Revision: D15997397
Pulled By: yf225
fbshipit-source-id: 6fcab7b14e138824fc2adb5434512bcf868ca375
Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.
After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.
**Note that this PR is BC-breaking in the following use cases:**
**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.
**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
# Change gradient to a sparse tensor
params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))
grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad) # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072
Differential Revision: D14075257
Pulled By: yf225
fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
Summary:
#19975 was separated by 2 PRs.
This one:
Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.
At this moment both functions just operate with strides and doesn't store any tensor state.
(Original RFC #19092)
-----
Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).
Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.
1. `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.
- Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.
`x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.
2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.
- `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.
Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455
Differential Revision: D15341577
Pulled By: VitalyFedyunin
fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17991
changes:
-Breaks bc: Tensor::type() now returns DeprecatedTypeProperties& rather than Type&.
-Added DeprecatedTypeProperties, it serves as a temporary replacement for Type as the return value of Tensor::type(). This contributes to making Type just for dispatch purposes so that we can make it dtype agnostic.
-Tensor::dispatch_type() now returns Type& like Tensor::type() used to do.
-Changed callsites of Tensor::type() appropriately.
Reviewed By: ezyang
Differential Revision: D14443117
fbshipit-source-id: 239ccb7a09626279a71d1a37f8f82e7f57bf7d9e
Summary:
I don't know if we actually want to expose this or not, but it's useful for debugging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18197
Reviewed By: ezyang
Differential Revision: D14530712
Pulled By: gchanan
fbshipit-source-id: 98fdba9cf113738f0db3a198c49365de536b9919
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17810
Partially addresses #12728. Also, switch the element_size bindings
to use the new function, rather than the method on Type.
We don't add Python bindings yet, as they need to be special
(they will be properties.)
Differential Revision: D14388790
fbshipit-source-id: 294183d0c8a59b0c13f2bf21d6f1cd557333e83b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
Some renaming and renamespacing also took place. I was originally planning not to do anything, but it turns out that it was easier to make HIPify work by using a namespace CUDACachingAllocator:: rather than THCCachingAllocator_, since :: is a word boundary but _ is not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16119
Reviewed By: smessmer
Differential Revision: D13718768
fbshipit-source-id: 884a481d99027fd3e34471c020f826aa12225656
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16117
This means I can move it to c10_cuda with minimal fuss.
Reviewed By: smessmer
Differential Revision: D13717836
fbshipit-source-id: a94c7dc649af64542480fc1c226b289588886c00
Summary:
1. Added `torch/csrc/cuda/Event.h` and `torch/csrc/cuda/Event.cpp` to bind Python Event class to C++ implementation.
2. Move all CUDA runtime invocations from `torch/cuda/streams.py` to C++
3. Added tests to cover Stream and Event APIs. ~(event IPC handle tests is introduced in #15974)~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15937
Differential Revision: D13649001
Pulled By: mrshenli
fbshipit-source-id: 84ca58f35f6ba679a4ba33150ceba678d760d240
Summary:
This would solve the tracing problems of #13969.
Fixes: #14732
I would appreciate if this got good scrutiny before applied.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14097
Differential Revision: D13323181
Pulled By: ezyang
fbshipit-source-id: dcd104b497c0bfddb751923c6166a3824b7a3702
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14246
This commit systematically eliminates THCStream entirely from THC, replacing it
with at::cuda::CUDAStream. In places where the previous pointer type showed up
in a public API signature, those functions are now only available to C++
clients. (It would not be too difficult to make a C-compatible version of
CUDAStream, as it's really just a simple struct, but we leave this for
future work.)
All functions in THC that referred to THCStream were expunged in favor of their
modern counterparts.
One annoyance was that I didn't feel like redoing how the torch.cuda.Stream
binding code worked, but I really wanted to get rid of the stored THCStream*
pointer. So I repurposed the bit-packing code I implemented for Stream hashing,
and used that to (reversibly) store streams in a uint64_t cdata field. A perhaps
more future proof solution would be to get rid of cdata entirely, and store the
device and stream ID directly.
Billing of changes:
- All CUDAStream_ pointer API functions are now hidden and anonymously
namespaced (instead of being in the impl namespace). All use sites
rewritten to use the modern C++ API. Since CUDAStreamInternals is no
longer part of the public API, the CUDAStreamInternals constructor and
internals() method have been removed, and replaced with anonymous
functions in the C++ file.
- device_index() returns DeviceIndex rather than int64_t now
- Stream and CUDAStream now have pack/unpack methods. (CUDAStream checks
that the unpacked bit-pattern is for a CUDA device.)
- THCStream.h header is removed entirely
- Most THCStream handling functions in THC API are removed
Reviewed By: gchanan
Differential Revision: D13121531
fbshipit-source-id: 48873262cc0a37c3eec75a7ba1c93c800da40222
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13342
This PR introduces a few new concepts:
- DeviceGuardImplInterface, and implementations for CPU and CUDA, which
provide a generic interface for interfacing with device and stream state,
without requiring a direct dependency on the code in question.
- InlineDeviceGuard, a general template for generating both specialized
and dynamically dispatched device guard implementations. Dynamic
dispatch is done by specializing it on a VirtualGuardImpl.
- Provide a device-independent DeviceGuard class, which can be used even
from CPU code. It uses the aforementioned dynamic dispatch.
- CUDA-specialized CUDAGuard class, which doesn't have a dynamic dispatch
but can only be used from CUDA.
- StreamGuard, which is the same as above, but for streams rather than
devices.
- Optional variants of all the aforementioned guards, which are a no-op if
no device/stream is specified
- CUDAMultiStreamGuard, specifically for the case when we want to set
a device on every guard.
There are some subtle semantic changes, which have been thoroughly documented
in the class definition.
BC-breaking changes:
- Move constructor/assignment have been removed from all device guard
implementations.
- In some cases where you previously wrote 'set_device' (or 'set_stream'), you now must write
'reset_device', because if you switch devices/device types, the stream/device on the
previous device is unset. This is different from previous behavior.
- CUDAGuard no longer handles streams, or multiple streams. Use CUDAStreamGuard
or CUDAMultiStreamGuard as appropriate for your use case.
Reviewed By: dzhulgakov
Differential Revision: D12849620
fbshipit-source-id: f61956256f0b12be754b3234fcc73c2abc1be04e
Summary:
When we added to in #13146, we did not emit the cast correctly in one of the dispatch overloads, then when we call .cpu(), the dtype will always be the default float type, which is wrong.
CC jamesr66a eellison
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13700
Differential Revision: D12968699
Pulled By: wanchaol
fbshipit-source-id: c1aaf2bf6a163643ce5360797da61c68271d8bf8
Summary:
This PR special cases tensor.storage_offset to avoid dispatches in the
common case. tensor.storage_offset is important for torch.as_strided
performance, because as_strided(sizes, strides) shares an implementation
with as_strided(sizes, strides, storage_offset) and it might not be the
best if there were two separate implementations (including backward
implementations).
This PR reduces times on a tensor.storage_offset
microbenchmark from 22ns to 2ns (these numbers are pretty stable). For
a torch.as_strided benchmark, this PR reduces numbers from 1042 to
928ns, a 100ns improvement, but this number is noisy and goes up and
down.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13267
Reviewed By: ezyang
Differential Revision: D12829828
Pulled By: zou3519
fbshipit-source-id: df907731e2398ce2baf1c8b1860a561ccc456f78
Summary:
Module.to uses the Tensor.to parsing facility.
It should not, however, accept "copy" as a keyword/fourth positional
argument.
See #12571 for discussion.
Thank you SsnL for noticing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12617
Differential Revision: D10392053
Pulled By: ezyang
fbshipit-source-id: b67a5def7993189b4b47193abc7b741b7d07512c
Summary:
There are still a few work to be done:
- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h
This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:
(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.
Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354
Reviewed By: orionr
Differential Revision: D10238910
Pulled By: Yangqing
fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
Summary:
Implement contiguous as `aten::contiguous` so it can be recorded during tracing. This was causing issues with both the trace checker as well as when a `contiguous()`-ed tensor was used downstream in a view that expected certain strides
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12541
Differential Revision: D10304028
Pulled By: jamesr66a
fbshipit-source-id: dc4c878771d052f5a0e9674f610fdec3c6782c41