mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17810 Partially addresses #12728. Also, switch the element_size bindings to use the new function, rather than the method on Type. We don't add Python bindings yet, as they need to be special (they will be properties.) Differential Revision: D14388790 fbshipit-source-id: 294183d0c8a59b0c13f2bf21d6f1cd557333e83b
706 lines
26 KiB
C++
706 lines
26 KiB
C++
// ${generated_comment}
|
|
|
|
#include <Python.h>
|
|
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/Size.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/python_error_messages.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/utils/python_arg_parsing.h"
|
|
#include "torch/csrc/jit/tracer.h"
|
|
#ifdef USE_CUDA
|
|
#include "torch/csrc/cuda/Stream.h"
|
|
#include "torch/csrc/cuda/Event.h"
|
|
#endif
|
|
#include "torch/csrc/utils/cuda_lazy_init.h"
|
|
#include "torch/csrc/utils/object_ptr.h"
|
|
#include "torch/csrc/utils/python_arg_parser.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
#include "torch/csrc/utils/python_strings.h"
|
|
#include "torch/csrc/utils/python_tuples.h"
|
|
#include "torch/csrc/utils/tensor_apply.h"
|
|
#include "torch/csrc/utils/tensor_list.h"
|
|
#include "torch/csrc/utils/tensor_new.h"
|
|
#include "torch/csrc/utils/tensor_numpy.h"
|
|
#include "torch/csrc/utils/tensor_types.h"
|
|
#include "torch/csrc/utils/structseq.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
#include "c10/util/Optional.h"
|
|
|
|
#include "python_variable_methods_dispatch.h"
|
|
|
|
#include <stdexcept>
|
|
|
|
using at::DeviceGuard;
|
|
using at::device_of;
|
|
using at::OptionalDeviceGuard;
|
|
using at::Backend;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Tensor;
|
|
using namespace torch::autograd::utils;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
static PyObject * THPVariable_apply_(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call apply_() on Variable that requires grad. Use "
|
|
"var.detach().apply_() instead.");
|
|
}
|
|
return THPVariable_Wrap(torch::utils::apply_(self_, arg));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_size(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"size(int64_t dim)",
|
|
"size()",
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
if (jit::tracer::isTracing()) {
|
|
return wrap(jit::tracer::getSizeOf(self_, r.toInt64(0)));
|
|
} else {
|
|
return wrap(self_.size(r.toInt64(0)));
|
|
}
|
|
} else if (r.idx == 1) {
|
|
// we can't do the normal wrapping here because IntArrayRef maps to both
|
|
// torch.Size and tuple in python.
|
|
return THPSize_New(self_);
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_stride(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"stride(int64_t dim)",
|
|
"stride()",
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
return wrap(self_.stride(r.toInt64(0)));
|
|
} else if (r.idx == 1) {
|
|
// yes, this is called strides in ATen.
|
|
IntArrayRef strides = self_.strides();
|
|
// we can't do the normal wrapping here because IntArrayRef maps to both
|
|
// torch.Size and tuple in python
|
|
return THPUtils_packInt64Array(strides.size(), strides.data());
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_get_device(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
|
|
return wrap(self.get_device());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_storage_offset(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
|
|
return wrap(self.storage_offset());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_dim(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPUtils_packInt64(self_.dim());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_contiguous(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
return self.contiguous();
|
|
}
|
|
static PyObject * THPVariable_contiguous(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
// avoids touching the GIL or current device if self is already contiguous
|
|
if (self_.is_contiguous()) {
|
|
// NOTE: this logic is duplicated from VariableType.cpp. Since we need to
|
|
// record this call to contiguous() in the trace regardless of whether
|
|
// we actually call contiguous here, we need to record this information
|
|
// manually.
|
|
if (jit::tracer::isTracing()) {
|
|
auto tracer_state = jit::tracer::getTracingState();
|
|
auto node = tracer_state->graph->create(jit::aten::contiguous, /*num_outputs=*/0);
|
|
jit::tracer::recordSourceLocation(node);
|
|
jit::tracer::addInputs(node, "self", self_);
|
|
tracer_state->graph->insertNode(node);
|
|
jit::tracer::addOutput(node, self_);
|
|
}
|
|
Py_INCREF(self);
|
|
return self;
|
|
}
|
|
return THPVariable_Wrap(dispatch_contiguous(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_copy_(Tensor & self, const Tensor & other, bool non_blocking) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
return self.copy_(other, non_blocking);
|
|
}
|
|
|
|
static PyObject * THPVariable_copy_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"copy_(Tensor other, bool non_blocking=False)",
|
|
"copy_(Tensor other, bool async=False)|deprecated"
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
return THPVariable_Wrap(dispatch_copy_(self_, r.tensor(0), r.toBool(1)));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static double dispatch_to_CDouble(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
if (self.numel() != 1) {
|
|
throw ValueError("only one element tensors can be converted to Python scalars");
|
|
}
|
|
return self.item<double>();
|
|
}
|
|
|
|
static std::complex<double> dispatch_to_CComplexDouble(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
if (self.numel() != 1) {
|
|
throw ValueError("only one element tensors can be converted to Python scalars");
|
|
}
|
|
return self.item<std::complex<double>>();
|
|
}
|
|
|
|
static int64_t dispatch_to_CLong(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
if (self.numel() != 1) {
|
|
throw ValueError("only one element tensors can be converted to Python scalars");
|
|
}
|
|
return self.item<int64_t>();
|
|
}
|
|
|
|
static PyObject * THPVariable_float_scalar(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python float", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return wrap(dispatch_to_CDouble(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_integral_scalar(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python integer", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (isFloatingType(self_.scalar_type())) {
|
|
// we can't dispatch to item<int64_t> here because we want to avoid ATen overflow checks;
|
|
// the python integral type (long in python2) can't overflow.
|
|
return THPUtils_packDoubleAsInt(dispatch_to_CDouble(self_));
|
|
} else {
|
|
return wrap(dispatch_to_CLong(self_));
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// This is the __index__ function in Python which is similar to __int__, but
|
|
// called when used as a slice.
|
|
static PyObject * THPVariable_index_scalar(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python index", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
// TODO: change the condition to `self_.dim() != 0` once we expose scalars
|
|
// in PyTorch.
|
|
if (!isIntegralType(self_.scalar_type()) || self_.numel() != 1) {
|
|
throw TypeError("only integer tensors of a single element can be converted to an index");
|
|
}
|
|
return wrap(dispatch_to_CLong(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_invert(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
return 1 - self;
|
|
}
|
|
|
|
static PyObject * THPVariable_invert(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.scalar_type() != at::kByte) {
|
|
throw TypeError("~ (operator.invert) is only implemented on byte tensors");
|
|
}
|
|
return THPVariable_Wrap(dispatch_invert(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_to(const Tensor & self, Device device, bool non_blocking, bool copy) {
|
|
AutoNoGIL no_gil;
|
|
// NOTE: this is where we record aten::to in the graph during tracing. However, the behavior of aten::to
|
|
// is different with respect to TensorOptions fields that are not present: aten::to inherits fields that
|
|
// are missing from the self argument while the tracer assumes that they should be populated with the
|
|
// default values (eg. float for scalar type). By explicitly copying over the tensor options here we fully
|
|
// specify all tensor options and thus record the proper trace
|
|
return self.to(self.options().device(device), non_blocking, copy);
|
|
}
|
|
|
|
static Tensor dispatch_to(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy) {
|
|
AutoNoGIL no_gil;
|
|
return self.to(dtype, non_blocking, copy);
|
|
}
|
|
|
|
static Tensor dispatch_to(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy) {
|
|
AutoNoGIL no_gil;
|
|
return self.to(device, dtype, non_blocking, copy);
|
|
}
|
|
|
|
static PyObject * THPVariable_cpu(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPVariable_Wrap(dispatch_to(self_, at::Device(at::DeviceType::CPU), false, false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_cuda(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"cuda(Device? device=None, bool non_blocking=False)",
|
|
"cuda(Device? device=None, bool async=False)|deprecated"
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto device = r.isNone(0) ? at::Device(at::DeviceType::CUDA) : r.device(0);
|
|
AT_CHECK(device.is_cuda(), "Invalid device, must be cuda device");
|
|
torch::utils::cuda_lazy_init();
|
|
return THPVariable_Wrap(dispatch_to(self_, device, r.toBool(1), false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_to_type(PyObject* self, ScalarType scalarType) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPVariable_Wrap(dispatch_to(self_, scalarType, false, false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
static PyObject * THPVariable_byte(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Byte);
|
|
}
|
|
|
|
static PyObject * THPVariable_char(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Char);
|
|
}
|
|
|
|
static PyObject * THPVariable_double(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Double);
|
|
}
|
|
|
|
static PyObject * THPVariable_float(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Float);
|
|
}
|
|
|
|
static PyObject * THPVariable_half(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Half);
|
|
}
|
|
|
|
static PyObject * THPVariable_int(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Int);
|
|
}
|
|
|
|
static PyObject * THPVariable_long(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Long);
|
|
}
|
|
|
|
static PyObject * THPVariable_short(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Short);
|
|
}
|
|
|
|
static PyObject * THPVariable_element_size(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPUtils_packInt64(self_.element_size());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_numpy(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a NumPy array", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call numpy() on Variable that requires grad. "
|
|
"Use var.detach().numpy() instead.");
|
|
}
|
|
return torch::utils::tensor_to_numpy(self_.data());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// TODO: move this to ATen. We would need to expose Stream objects in ATen.
|
|
static PyObject * THPVariable_record_stream(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
#ifdef USE_CUDA
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (!THCPStream_Check(arg)) {
|
|
return PyErr_Format(PyExc_TypeError, "expected Stream object");
|
|
}
|
|
void* data = self_.data_ptr();
|
|
c10::cuda::CUDACachingAllocator::recordStream(data, at::cuda::CUDAStream::unpack(((THCPStream*)arg)->cdata));
|
|
Py_RETURN_NONE;
|
|
#else
|
|
throw std::runtime_error("PyTorch compiled without CUDA support");
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_requires_grad_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"requires_grad_(bool requires_grad=True)",
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<1> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto requires_grad = r.toBool(0);
|
|
// should we throw if requires_grad is true? var.requires_grad = True throws here
|
|
// but it's nice to let this be a no-op.
|
|
if (!self_.is_leaf() && !requires_grad) {
|
|
throw std::runtime_error(autograd::utils::requires_grad_leaf_error(requires_grad));
|
|
}
|
|
if (requires_grad && !self_.is_floating_point()) {
|
|
throw std::runtime_error("only Tensors of floating point dtype can require gradients");
|
|
}
|
|
self_.set_requires_grad(requires_grad);
|
|
return THPVariable_Wrap(self_);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
inline bool dispatch_is_contiguous(Tensor & self) {
|
|
return self.is_contiguous();
|
|
}
|
|
|
|
static PyObject * THPVariable_is_contiguous(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
|
|
return wrap(dispatch_is_contiguous(self));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_item(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python number", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.is_floating_point()) {
|
|
return wrap(dispatch_to_CDouble(self_));
|
|
} else if (self_.is_complex()) {
|
|
return wrap(dispatch_to_CComplexDouble(self_));
|
|
} else {
|
|
return wrap(dispatch_to_CLong(self_));
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_map_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({ "map_(Tensor other, PyObject* callable)" });
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Variable other = r.tensor(0);
|
|
if (self_.requires_grad() || other.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call map_() on Variable that requires grad. Use "
|
|
"var.detach().map_() instead.");
|
|
}
|
|
return THPVariable_Wrap(torch::utils::map_(self_, other, r.pyobject(1)));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_map2_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({ "map2_(Tensor x, Tensor y, PyObject* callable)" });
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Variable x = r.tensor(0);
|
|
Variable y = r.tensor(1);
|
|
if (self_.requires_grad() || x.requires_grad() || y.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call map2_() on Variable that requires grad. Use "
|
|
"var.detach().map2_() instead.");
|
|
}
|
|
return THPVariable_Wrap(torch::utils::map2_(self_, x, y, r.pyobject(2)));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::legacy_tensor_new(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_empty(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_empty", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_empty(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_full(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_full", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_full(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_ones(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_ones", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_ones(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_tensor(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_tensor", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_tensor(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_zeros(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_zeros", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_zeros(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_storage(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return createPyObject(self_.storage());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_storage_type(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
auto storage = THPObjectPtr(createPyObject(self_.storage()));
|
|
auto storage_type = (PyObject*)Py_TYPE(storage);
|
|
Py_INCREF(storage_type);
|
|
return storage_type;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_to(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto parsed = parse_to_conversion(args, kwargs, /*allow_copy*/ true);
|
|
auto& device = std::get<0>(parsed);
|
|
auto& scalarType = std::get<1>(parsed);
|
|
auto non_blocking = std::get<2>(parsed);
|
|
auto copy = std::get<3>(parsed);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (device && device->is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
if (!device && !scalarType && !copy) {
|
|
Py_INCREF(self);
|
|
return self;
|
|
} else if (!device) {
|
|
return THPVariable_Wrap(dispatch_to(self_, *scalarType, non_blocking, copy));
|
|
} else if (!scalarType) {
|
|
return THPVariable_Wrap(dispatch_to(self_, *device, non_blocking, copy));
|
|
} else {
|
|
return THPVariable_Wrap(dispatch_to(self_, *device, *scalarType, non_blocking, copy));
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_tolist(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python list", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return torch::utils::tensor_to_list(self_.data());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_type(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"type(PyObject* dtype=None, bool non_blocking=False)",
|
|
"type(PyObject* dtype=None, bool async=False)|deprecated"
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.isNone(0)) {
|
|
return THPUtils_packString(torch::utils::type_to_string(self_.type()));
|
|
}
|
|
auto obj = r.pyobject(0);
|
|
std::string type_name;
|
|
bool is_dtype = false;
|
|
if (PyType_Check(obj)) {
|
|
if (obj == THPVariableClass) {
|
|
type_name = "torch.Tensor";
|
|
} else {
|
|
type_name = ((PyTypeObject*)obj)->tp_name;
|
|
}
|
|
} else if (THPUtils_checkString(obj)) {
|
|
type_name = THPUtils_unpackString(obj);
|
|
} else if (THPDtype_Check(obj)) {
|
|
is_dtype = true;
|
|
} else {
|
|
throw TypeError("dtype must be a type, str, or dtype object");
|
|
}
|
|
ScalarType scalar_type;
|
|
Device device = self_.device();
|
|
if (is_dtype) {
|
|
scalar_type = r.scalartype(0);
|
|
} else {
|
|
auto& type = torch::utils::type_from_string(type_name);
|
|
scalar_type = type.scalarType();
|
|
auto device_type = backendToDeviceType(type.backend());
|
|
if (device_type != device.type()) {
|
|
device = at::Device(device_type);
|
|
}
|
|
}
|
|
if (device.is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
return THPVariable_Wrap(dispatch_to(self_, device, scalar_type, /*non_blocking=*/ r.toBool(1), /*copy=*/ false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// generated methods start here
|
|
|
|
${py_methods}
|
|
|
|
static PyObject * THPVariable_bool(PyObject* self, PyObject* args) {
|
|
jit::tracer::warn("Converting a tensor to a Python boolean", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
return THPVariable_is_nonzero(self, args);
|
|
}
|
|
|
|
PyMethodDef variable_methods[] = {
|
|
{"__add__", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__radd__", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__iadd__", (PyCFunction)THPVariable_add_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__rmul__", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__mul__", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__imul__", (PyCFunction)THPVariable_mul_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__sub__", (PyCFunction)THPVariable_sub, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__isub__", (PyCFunction)THPVariable_sub_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__div__", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__truediv__", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__idiv__", (PyCFunction)THPVariable_div_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__mod__", (PyCFunction)THPVariable_remainder, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__bool__", (PyCFunction)THPVariable_bool, METH_NOARGS, NULL},
|
|
{"__float__", (PyCFunction)THPVariable_float_scalar, METH_NOARGS, NULL},
|
|
{"__int__", (PyCFunction)THPVariable_integral_scalar, METH_NOARGS, NULL},
|
|
{"__long__", (PyCFunction)THPVariable_integral_scalar, METH_NOARGS, NULL},
|
|
{"__index__", (PyCFunction)THPVariable_index_scalar, METH_NOARGS, NULL},
|
|
{"__nonzero__", (PyCFunction)THPVariable_bool, METH_NOARGS, NULL},
|
|
{"__invert__", (PyCFunction)THPVariable_invert, METH_NOARGS, NULL},
|
|
{"__matmul__", (PyCFunction)THPVariable_matmul, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"apply_", (PyCFunction)THPVariable_apply_, METH_O, NULL},
|
|
{"byte", (PyCFunction)THPVariable_byte, METH_NOARGS, NULL},
|
|
{"char", (PyCFunction)THPVariable_char, METH_NOARGS, NULL},
|
|
{"contiguous", (PyCFunction)THPVariable_contiguous, METH_NOARGS, NULL},
|
|
{"copy_", (PyCFunction)THPVariable_copy_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"cpu", (PyCFunction)THPVariable_cpu, METH_NOARGS, NULL},
|
|
{"cuda", (PyCFunction)THPVariable_cuda, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"dim", (PyCFunction)THPVariable_dim, METH_NOARGS, NULL},
|
|
{"double", (PyCFunction)THPVariable_double, METH_NOARGS, NULL},
|
|
{"element_size", (PyCFunction)THPVariable_element_size, METH_NOARGS, NULL},
|
|
{"float", (PyCFunction)THPVariable_float, METH_NOARGS, NULL},
|
|
{"get_device", (PyCFunction)THPVariable_get_device, METH_NOARGS, NULL},
|
|
{"half", (PyCFunction)THPVariable_half, METH_NOARGS, NULL},
|
|
{"int", (PyCFunction)THPVariable_int, METH_NOARGS, NULL},
|
|
{"is_contiguous", (PyCFunction)THPVariable_is_contiguous, METH_NOARGS, NULL},
|
|
{"item", (PyCFunction)THPVariable_item, METH_NOARGS, NULL},
|
|
{"long", (PyCFunction)THPVariable_long, METH_NOARGS, NULL},
|
|
{"map_", (PyCFunction)THPVariable_map_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"map2_", (PyCFunction)THPVariable_map2_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"ndimension", (PyCFunction)THPVariable_dim, METH_NOARGS, NULL},
|
|
{"nelement", (PyCFunction)THPVariable_numel, METH_NOARGS, NULL},
|
|
{"new", (PyCFunction)THPVariable_new, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_empty", (PyCFunction)THPVariable_new_empty, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_full", (PyCFunction)THPVariable_new_full, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_ones", (PyCFunction)THPVariable_new_ones, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_tensor", (PyCFunction)THPVariable_new_tensor, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_zeros", (PyCFunction)THPVariable_new_zeros, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"numpy", (PyCFunction)THPVariable_numpy, METH_NOARGS, NULL},
|
|
{"record_stream", (PyCFunction)THPVariable_record_stream, METH_O, NULL},
|
|
{"requires_grad_", (PyCFunction)THPVariable_requires_grad_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"short", (PyCFunction)THPVariable_short, METH_NOARGS, NULL},
|
|
{"size", (PyCFunction)THPVariable_size, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"storage", (PyCFunction)THPVariable_storage, METH_NOARGS, NULL},
|
|
{"storage_offset", (PyCFunction)THPVariable_storage_offset, METH_NOARGS, NULL},
|
|
{"storage_type", (PyCFunction)THPVariable_storage_type, METH_NOARGS, NULL},
|
|
{"stride", (PyCFunction)THPVariable_stride, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"to", (PyCFunction)THPVariable_to, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"tolist", (PyCFunction)THPVariable_tolist, METH_NOARGS, NULL},
|
|
{"type", (PyCFunction)THPVariable_type, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
${py_method_defs}
|
|
{NULL}
|
|
};
|
|
|
|
}} // namespace torch::autograd
|