mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/17112 ```python print("good", torch.randn(5,5,5).max(1)) print("terrible", torch.randn(5,5,10).max(1)) print("not as good", torch.randn(5,5,500).max(1)) print ("old behaviour = gold standard") print(tuple(torch.randn(5,5,5).max(1))) print(tuple(torch.randn(5,5,10).max(1))) print(tuple(torch.randn(5,5,500).max(1))) ``` now gives ``` >>> import torch >>> print("good", torch.randn(5,5,5).max(1)) good torch.return_types.max( values=tensor([[ 1.2821, 1.8063, 1.8075, 1.3082, -0.1267], [ 0.3437, 0.7353, 1.2619, 0.7557, 1.6662], [ 0.8583, 1.8906, 1.0246, 1.7598, 1.1184], [ 1.7821, 0.0230, 0.9452, 1.0318, 1.0823], [ 0.4116, -0.0379, -0.1843, 1.4129, 1.8796]]), indices=tensor([[4, 4, 3, 2, 1], [1, 2, 4, 1, 1], [2, 4, 0, 2, 1], [0, 2, 0, 3, 1], [0, 4, 4, 4, 4]])) >>> print("terrible", torch.randn(5,5,10).max(1)) terrible torch.return_types.max( values=tensor([[ 2.1272, 1.3664, 2.2067, 1.3974, -0.0883, 1.2505, 1.0074, 1.1217, 0.3849, 0.6936], [ 0.6288, -0.4560, 1.2748, 1.5482, 1.2777, 1.6874, 0.7151, 0.6041, 1.3572, 1.6232], [ 1.6703, 1.0075, 1.6480, 2.2839, 1.3390, 0.4938, 1.6449, 1.7628, 0.8141, 2.5714], [ 0.7079, 1.8677, 3.2478, 1.5591, 2.4870, 0.8635, -0.1450, 1.6923, 1.4924, 1.6298], [ 2.4056, 0.8002, 0.9317, 0.7455, 0.7866, 2.1191, 0.3492, 1.2095, 1.8637, 1.7470]]), indices=tensor([[1, 1, 0, 0, 0, 0, 3, 4, 4, 4], [4, 2, 2, 1, 2, 2, 3, 1, 1, 3], [0, 3, 3, 0, 2, 1, 4, 1, 0, 1], [4, 1, 3, 0, 3, 2, 0, 1, 4, 3], [1, 0, 3, 2, 1, 0, 0, 1, 0, 1]])) >>> print("not as good", torch.randn(5,5,500).max(1)) not as good torch.return_types.max( values=tensor([[ 0.3877, 0.7873, 1.8701, ..., 0.5971, 1.6103, -0.3435], [ 1.1300, 2.2418, 1.4239, ..., 1.3943, 0.3872, 1.6475], [ 2.0656, 1.3136, 0.9896, ..., 2.3918, 0.8226, 1.0517], [ 1.1054, 0.9945, 1.0561, ..., 2.1039, 1.1524, 3.0304], [ 1.5041, 2.2809, 1.0883, ..., 0.8504, 2.4774, 1.1041]]), indices=tensor([[4, 3, 1, ..., 1, 4, 0], [4, 4, 4, ..., 3, 0, 3], [3, 0, 1, ..., 2, 2, 4], [0, 1, 1, ..., 4, 2, 2], [1, 0, 4, ..., 2, 0, 2]])) >>> print ("old behaviour = gold standard") old behaviour = gold standard >>> print(tuple(torch.randn(5,5,5).max(1))) (tensor([[ 1.1908, 1.1807, 1.3151, 1.7184, 0.3556], [ 0.3798, 0.9213, 0.3001, 1.3087, 2.2419], [ 1.4233, 1.4814, 1.9900, 1.7744, 1.3059], [ 1.0026, -0.0330, 1.3061, 1.8730, 2.0685], [ 1.3041, 1.6458, 1.3449, 1.8948, 3.6206]]), tensor([[0, 4, 3, 4, 0], [1, 1, 4, 0, 4], [4, 1, 0, 3, 3], [1, 2, 1, 4, 0], [3, 3, 0, 3, 3]])) >>> print(tuple(torch.randn(5,5,10).max(1))) (tensor([[-0.1232, 0.8275, 0.6732, 1.1223, 0.8247, 1.2851, 1.6009, 1.9979, 1.9109, 0.7313], [ 0.2260, 0.5922, 1.6928, 0.6024, 2.1158, 3.0619, 0.5653, 0.7426, 0.8316, 0.6346], [ 0.4319, 0.2231, 0.5255, 1.7620, 1.1657, 0.8875, 0.5782, 0.6506, 0.5032, 1.7097], [ 0.4137, 1.7265, 1.4260, 2.0301, 1.2244, 0.7128, 2.6345, 0.7230, 1.3553, 1.6508], [ 1.0684, 1.7195, 1.4068, 0.7076, -0.0242, 0.8474, 0.8754, 1.7108, 0.2188, 1.1584]]), tensor([[0, 1, 3, 4, 2, 3, 4, 2, 1, 0], [1, 4, 0, 0, 3, 2, 0, 0, 3, 3], [2, 3, 1, 1, 4, 0, 1, 4, 4, 4], [0, 4, 1, 3, 2, 0, 2, 0, 3, 1], [1, 0, 0, 0, 0, 3, 3, 3, 2, 0]])) >>> print(tuple(torch.randn(5,5,500).max(1))) (tensor([[0.9395, 1.5572, 1.8797, ..., 2.0494, 0.8202, 0.9623], [1.7937, 0.7225, 1.8836, ..., 0.7927, 1.4976, 1.1813], [0.8558, 1.6943, 1.4192, ..., 0.8327, 1.9661, 0.4197], [1.2993, 1.4995, 0.9357, ..., 0.7810, 1.3030, 2.6216], [1.4206, 1.8315, 1.0338, ..., 1.4312, 1.3198, 1.5233]]), tensor([[0, 4, 3, ..., 3, 0, 2], [0, 1, 0, ..., 0, 4, 3], [3, 4, 3, ..., 3, 0, 0], [3, 2, 3, ..., 1, 2, 1], [1, 2, 4, ..., 3, 1, 3]])) ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/17136 Differential Revision: D14250021 Pulled By: VitalyFedyunin fbshipit-source-id: aae72f03b35980063b1ac1f07b8353eddb0c8b93
707 lines
26 KiB
C++
707 lines
26 KiB
C++
// ${generated_comment}
|
|
|
|
#include <Python.h>
|
|
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/Size.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/python_error_messages.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/utils/python_arg_parsing.h"
|
|
#include "torch/csrc/jit/tracer.h"
|
|
#ifdef USE_CUDA
|
|
#include "torch/csrc/cuda/Stream.h"
|
|
#include "torch/csrc/cuda/Event.h"
|
|
#endif
|
|
#include "torch/csrc/utils/cuda_lazy_init.h"
|
|
#include "torch/csrc/utils/object_ptr.h"
|
|
#include "torch/csrc/utils/python_arg_parser.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
#include "torch/csrc/utils/python_strings.h"
|
|
#include "torch/csrc/utils/python_tuples.h"
|
|
#include "torch/csrc/utils/tensor_apply.h"
|
|
#include "torch/csrc/utils/tensor_list.h"
|
|
#include "torch/csrc/utils/tensor_new.h"
|
|
#include "torch/csrc/utils/tensor_numpy.h"
|
|
#include "torch/csrc/utils/tensor_types.h"
|
|
#include "torch/csrc/utils/structseq.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
#include "c10/util/Optional.h"
|
|
|
|
#include "python_variable_methods_dispatch.h"
|
|
|
|
#include <stdexcept>
|
|
|
|
using at::DeviceGuard;
|
|
using at::device_of;
|
|
using at::OptionalDeviceGuard;
|
|
using at::Backend;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Tensor;
|
|
using namespace torch::autograd::utils;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
static PyObject * THPVariable_apply_(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call apply_() on Variable that requires grad. Use "
|
|
"var.detach().apply_() instead.");
|
|
}
|
|
return THPVariable_Wrap(torch::utils::apply_(self_, arg));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_size(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"size(int64_t dim)",
|
|
"size()",
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
if (jit::tracer::isTracing()) {
|
|
return wrap(jit::tracer::getSizeOf(self_, r.toInt64(0)));
|
|
} else {
|
|
return wrap(self_.size(r.toInt64(0)));
|
|
}
|
|
} else if (r.idx == 1) {
|
|
// we can't do the normal wrapping here because IntArrayRef maps to both
|
|
// torch.Size and tuple in python.
|
|
return THPSize_New(self_);
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_stride(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"stride(int64_t dim)",
|
|
"stride()",
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
return wrap(self_.stride(r.toInt64(0)));
|
|
} else if (r.idx == 1) {
|
|
// yes, this is called strides in ATen.
|
|
IntArrayRef strides = self_.strides();
|
|
// we can't do the normal wrapping here because IntArrayRef maps to both
|
|
// torch.Size and tuple in python
|
|
return THPUtils_packInt64Array(strides.size(), strides.data());
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_get_device(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
|
|
return wrap(self.get_device());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_storage_offset(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
|
|
return wrap(self.storage_offset());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_dim(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPUtils_packInt64(self_.dim());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_contiguous(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
return self.contiguous();
|
|
}
|
|
static PyObject * THPVariable_contiguous(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
// avoids touching the GIL or current device if self is already contiguous
|
|
if (self_.is_contiguous()) {
|
|
// NOTE: this logic is duplicated from VariableType.cpp. Since we need to
|
|
// record this call to contiguous() in the trace regardless of whether
|
|
// we actually call contiguous here, we need to record this information
|
|
// manually.
|
|
if (jit::tracer::isTracing()) {
|
|
auto tracer_state = jit::tracer::getTracingState();
|
|
auto node = tracer_state->graph->create(jit::aten::contiguous, /*num_outputs=*/0);
|
|
jit::tracer::recordSourceLocation(node);
|
|
jit::tracer::addInputs(node, "self", self_);
|
|
tracer_state->graph->insertNode(node);
|
|
jit::tracer::addOutput(node, self_);
|
|
}
|
|
Py_INCREF(self);
|
|
return self;
|
|
}
|
|
return THPVariable_Wrap(dispatch_contiguous(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_copy_(Tensor & self, const Tensor & other, bool non_blocking) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
return self.copy_(other, non_blocking);
|
|
}
|
|
|
|
static PyObject * THPVariable_copy_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"copy_(Tensor other, bool non_blocking=False)",
|
|
"copy_(Tensor other, bool async=False)|deprecated"
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
return THPVariable_Wrap(dispatch_copy_(self_, r.tensor(0), r.toBool(1)));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static double dispatch_to_CDouble(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
if (self.numel() != 1) {
|
|
throw ValueError("only one element tensors can be converted to Python scalars");
|
|
}
|
|
return self.item<double>();
|
|
}
|
|
|
|
static std::complex<double> dispatch_to_CComplexDouble(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
if (self.numel() != 1) {
|
|
throw ValueError("only one element tensors can be converted to Python scalars");
|
|
}
|
|
return self.item<std::complex<double>>();
|
|
}
|
|
|
|
static int64_t dispatch_to_CLong(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
if (self.numel() != 1) {
|
|
throw ValueError("only one element tensors can be converted to Python scalars");
|
|
}
|
|
return self.item<int64_t>();
|
|
}
|
|
|
|
static PyObject * THPVariable_float_scalar(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python float", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return wrap(dispatch_to_CDouble(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_integral_scalar(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python integer", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (isFloatingType(self_.type().scalarType())) {
|
|
// we can't dispatch to item<int64_t> here because we want to avoid ATen overflow checks;
|
|
// the python integral type (long in python2) can't overflow.
|
|
return THPUtils_packDoubleAsInt(dispatch_to_CDouble(self_));
|
|
} else {
|
|
return wrap(dispatch_to_CLong(self_));
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// This is the __index__ function in Python which is similar to __int__, but
|
|
// called when used as a slice.
|
|
static PyObject * THPVariable_index_scalar(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python index", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
// TODO: change the condition to `self_.dim() != 0` once we expose scalars
|
|
// in PyTorch.
|
|
if (!isIntegralType(self_.type().scalarType()) || self_.numel() != 1) {
|
|
throw TypeError("only integer tensors of a single element can be converted to an index");
|
|
}
|
|
return wrap(dispatch_to_CLong(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_invert(const Tensor & self) {
|
|
AutoNoGIL no_gil;
|
|
OptionalDeviceGuard device_guard(device_of(self));
|
|
return 1 - self;
|
|
}
|
|
|
|
static PyObject * THPVariable_invert(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.type().scalarType() != at::kByte) {
|
|
throw TypeError("~ (operator.invert) is only implemented on byte tensors");
|
|
}
|
|
return THPVariable_Wrap(dispatch_invert(self_));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static Tensor dispatch_to(const Tensor & self, Device device, bool non_blocking, bool copy) {
|
|
AutoNoGIL no_gil;
|
|
// NOTE: this is where we record aten::to in the graph during tracing. However, the behavior of aten::to
|
|
// is different with respect to TensorOptions fields that are not present: aten::to inherits fields that
|
|
// are missing from the self argument while the tracer assumes that they should be populated with the
|
|
// default values (eg. float for scalar type). By explicitly copying over the tensor options here we fully
|
|
// specify all tensor options and thus record the proper trace
|
|
return self.to(self.options().device(device), non_blocking, copy);
|
|
}
|
|
|
|
static Tensor dispatch_to(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy) {
|
|
AutoNoGIL no_gil;
|
|
return self.to(dtype, non_blocking, copy);
|
|
}
|
|
|
|
static Tensor dispatch_to(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy) {
|
|
AutoNoGIL no_gil;
|
|
return self.to(device, dtype, non_blocking, copy);
|
|
}
|
|
|
|
static PyObject * THPVariable_cpu(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPVariable_Wrap(dispatch_to(self_, at::Device(at::DeviceType::CPU), false, false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_cuda(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"cuda(Device? device=None, bool non_blocking=False)",
|
|
"cuda(Device? device=None, bool async=False)|deprecated"
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto device = r.isNone(0) ? at::Device(at::DeviceType::CUDA) : r.device(0);
|
|
AT_CHECK(device.is_cuda(), "Invalid device, must be cuda device");
|
|
torch::utils::cuda_lazy_init();
|
|
return THPVariable_Wrap(dispatch_to(self_, device, r.toBool(1), false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_to_type(PyObject* self, ScalarType scalarType) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return THPVariable_Wrap(dispatch_to(self_, scalarType, false, false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
static PyObject * THPVariable_byte(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Byte);
|
|
}
|
|
|
|
static PyObject * THPVariable_char(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Char);
|
|
}
|
|
|
|
static PyObject * THPVariable_double(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Double);
|
|
}
|
|
|
|
static PyObject * THPVariable_float(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Float);
|
|
}
|
|
|
|
static PyObject * THPVariable_half(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Half);
|
|
}
|
|
|
|
static PyObject * THPVariable_int(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Int);
|
|
}
|
|
|
|
static PyObject * THPVariable_long(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Long);
|
|
}
|
|
|
|
static PyObject * THPVariable_short(PyObject* self, PyObject* args) {
|
|
return THPVariable_to_type(self, ScalarType::Short);
|
|
}
|
|
|
|
static PyObject * THPVariable_element_size(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
size_t element_size = self_.type().elementSizeInBytes();
|
|
return THPUtils_packInt64(element_size);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_numpy(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a NumPy array", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call numpy() on Variable that requires grad. "
|
|
"Use var.detach().numpy() instead.");
|
|
}
|
|
return torch::utils::tensor_to_numpy(self_.data());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// TODO: move this to ATen. We would need to expose Stream objects in ATen.
|
|
static PyObject * THPVariable_record_stream(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
#ifdef USE_CUDA
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (!THCPStream_Check(arg)) {
|
|
return PyErr_Format(PyExc_TypeError, "expected Stream object");
|
|
}
|
|
void* data = self_.data_ptr();
|
|
c10::cuda::CUDACachingAllocator::recordStream(data, at::cuda::CUDAStream::unpack(((THCPStream*)arg)->cdata));
|
|
Py_RETURN_NONE;
|
|
#else
|
|
throw std::runtime_error("PyTorch compiled without CUDA support");
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_requires_grad_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"requires_grad_(bool requires_grad=True)",
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<1> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto requires_grad = r.toBool(0);
|
|
// should we throw if requires_grad is true? var.requires_grad = True throws here
|
|
// but it's nice to let this be a no-op.
|
|
if (!self_.is_leaf() && !requires_grad) {
|
|
throw std::runtime_error(autograd::utils::requires_grad_leaf_error(requires_grad));
|
|
}
|
|
if (requires_grad && !self_.is_floating_point()) {
|
|
throw std::runtime_error("only Tensors of floating point dtype can require gradients");
|
|
}
|
|
self_.set_requires_grad(requires_grad);
|
|
return THPVariable_Wrap(self_);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
inline bool dispatch_is_contiguous(Tensor & self) {
|
|
return self.is_contiguous();
|
|
}
|
|
|
|
static PyObject * THPVariable_is_contiguous(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
|
|
return wrap(dispatch_is_contiguous(self));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_item(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python number", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.is_floating_point()) {
|
|
return wrap(dispatch_to_CDouble(self_));
|
|
} else if (self_.is_complex()) {
|
|
return wrap(dispatch_to_CComplexDouble(self_));
|
|
} else {
|
|
return wrap(dispatch_to_CLong(self_));
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_map_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({ "map_(Tensor other, PyObject* callable)" });
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Variable other = r.tensor(0);
|
|
if (self_.requires_grad() || other.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call map_() on Variable that requires grad. Use "
|
|
"var.detach().map_() instead.");
|
|
}
|
|
return THPVariable_Wrap(torch::utils::map_(self_, other, r.pyobject(1)));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_map2_(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({ "map2_(Tensor x, Tensor y, PyObject* callable)" });
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Variable x = r.tensor(0);
|
|
Variable y = r.tensor(1);
|
|
if (self_.requires_grad() || x.requires_grad() || y.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call map2_() on Variable that requires grad. Use "
|
|
"var.detach().map2_() instead.");
|
|
}
|
|
return THPVariable_Wrap(torch::utils::map2_(self_, x, y, r.pyobject(2)));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::legacy_tensor_new(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_empty(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_empty", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_empty(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_full(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_full", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_full(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_ones(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_ones", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_ones(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_tensor(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_tensor", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_tensor(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_new_zeros(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("new_zeros", jit::tracer::LEGACY_CONSTRUCTOR);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
OptionalDeviceGuard device_guard(device_of(self_));
|
|
return THPVariable_Wrap(torch::utils::new_zeros(self_.type(), args, kwargs));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_storage(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return createPyObject(self_.storage());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_storage_type(PyObject* self, PyObject* arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
auto storage = THPObjectPtr(createPyObject(self_.storage()));
|
|
auto storage_type = (PyObject*)Py_TYPE(storage);
|
|
Py_INCREF(storage_type);
|
|
return storage_type;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_to(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto parsed = parse_to_conversion(args, kwargs, /*allow_copy*/ true);
|
|
auto& device = std::get<0>(parsed);
|
|
auto& scalarType = std::get<1>(parsed);
|
|
auto non_blocking = std::get<2>(parsed);
|
|
auto copy = std::get<3>(parsed);
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (device && device->is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
if (!device && !scalarType && !copy) {
|
|
Py_INCREF(self);
|
|
return self;
|
|
} else if (!device) {
|
|
return THPVariable_Wrap(dispatch_to(self_, *scalarType, non_blocking, copy));
|
|
} else if (!scalarType) {
|
|
return THPVariable_Wrap(dispatch_to(self_, *device, non_blocking, copy));
|
|
} else {
|
|
return THPVariable_Wrap(dispatch_to(self_, *device, *scalarType, non_blocking, copy));
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_tolist(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("Converting a tensor to a Python list", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
auto self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
return torch::utils::tensor_to_list(self_.data());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_type(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"type(PyObject* dtype=None, bool non_blocking=False)",
|
|
"type(PyObject* dtype=None, bool async=False)|deprecated"
|
|
});
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.isNone(0)) {
|
|
return THPUtils_packString(torch::utils::type_to_string(self_.type()));
|
|
}
|
|
auto obj = r.pyobject(0);
|
|
std::string type_name;
|
|
bool is_dtype = false;
|
|
if (PyType_Check(obj)) {
|
|
if (obj == THPVariableClass) {
|
|
type_name = "torch.Tensor";
|
|
} else {
|
|
type_name = ((PyTypeObject*)obj)->tp_name;
|
|
}
|
|
} else if (THPUtils_checkString(obj)) {
|
|
type_name = THPUtils_unpackString(obj);
|
|
} else if (THPDtype_Check(obj)) {
|
|
is_dtype = true;
|
|
} else {
|
|
throw TypeError("dtype must be a type, str, or dtype object");
|
|
}
|
|
ScalarType scalar_type;
|
|
Device device = self_.device();
|
|
if (is_dtype) {
|
|
scalar_type = r.scalartype(0);
|
|
} else {
|
|
auto& type = torch::utils::type_from_string(type_name);
|
|
scalar_type = type.scalarType();
|
|
auto device_type = backendToDeviceType(type.backend());
|
|
if (device_type != device.type()) {
|
|
device = at::Device(device_type);
|
|
}
|
|
}
|
|
if (device.is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
return THPVariable_Wrap(dispatch_to(self_, device, scalar_type, /*non_blocking=*/ r.toBool(1), /*copy=*/ false));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// generated methods start here
|
|
|
|
${py_methods}
|
|
|
|
static PyObject * THPVariable_bool(PyObject* self, PyObject* args) {
|
|
jit::tracer::warn("Converting a tensor to a Python boolean", jit::tracer::WARN_PYTHON_DATAFLOW);
|
|
return THPVariable_is_nonzero(self, args);
|
|
}
|
|
|
|
PyMethodDef variable_methods[] = {
|
|
{"__add__", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__radd__", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__iadd__", (PyCFunction)THPVariable_add_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__rmul__", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__mul__", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__imul__", (PyCFunction)THPVariable_mul_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__sub__", (PyCFunction)THPVariable_sub, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__isub__", (PyCFunction)THPVariable_sub_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__div__", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__truediv__", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__idiv__", (PyCFunction)THPVariable_div_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__mod__", (PyCFunction)THPVariable_remainder, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"__bool__", (PyCFunction)THPVariable_bool, METH_NOARGS, NULL},
|
|
{"__float__", (PyCFunction)THPVariable_float_scalar, METH_NOARGS, NULL},
|
|
{"__int__", (PyCFunction)THPVariable_integral_scalar, METH_NOARGS, NULL},
|
|
{"__long__", (PyCFunction)THPVariable_integral_scalar, METH_NOARGS, NULL},
|
|
{"__index__", (PyCFunction)THPVariable_index_scalar, METH_NOARGS, NULL},
|
|
{"__nonzero__", (PyCFunction)THPVariable_bool, METH_NOARGS, NULL},
|
|
{"__invert__", (PyCFunction)THPVariable_invert, METH_NOARGS, NULL},
|
|
{"__matmul__", (PyCFunction)THPVariable_matmul, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"apply_", (PyCFunction)THPVariable_apply_, METH_O, NULL},
|
|
{"byte", (PyCFunction)THPVariable_byte, METH_NOARGS, NULL},
|
|
{"char", (PyCFunction)THPVariable_char, METH_NOARGS, NULL},
|
|
{"contiguous", (PyCFunction)THPVariable_contiguous, METH_NOARGS, NULL},
|
|
{"copy_", (PyCFunction)THPVariable_copy_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"cpu", (PyCFunction)THPVariable_cpu, METH_NOARGS, NULL},
|
|
{"cuda", (PyCFunction)THPVariable_cuda, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"dim", (PyCFunction)THPVariable_dim, METH_NOARGS, NULL},
|
|
{"double", (PyCFunction)THPVariable_double, METH_NOARGS, NULL},
|
|
{"element_size", (PyCFunction)THPVariable_element_size, METH_NOARGS, NULL},
|
|
{"float", (PyCFunction)THPVariable_float, METH_NOARGS, NULL},
|
|
{"get_device", (PyCFunction)THPVariable_get_device, METH_NOARGS, NULL},
|
|
{"half", (PyCFunction)THPVariable_half, METH_NOARGS, NULL},
|
|
{"int", (PyCFunction)THPVariable_int, METH_NOARGS, NULL},
|
|
{"is_contiguous", (PyCFunction)THPVariable_is_contiguous, METH_NOARGS, NULL},
|
|
{"item", (PyCFunction)THPVariable_item, METH_NOARGS, NULL},
|
|
{"long", (PyCFunction)THPVariable_long, METH_NOARGS, NULL},
|
|
{"map_", (PyCFunction)THPVariable_map_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"map2_", (PyCFunction)THPVariable_map2_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"ndimension", (PyCFunction)THPVariable_dim, METH_NOARGS, NULL},
|
|
{"nelement", (PyCFunction)THPVariable_numel, METH_NOARGS, NULL},
|
|
{"new", (PyCFunction)THPVariable_new, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_empty", (PyCFunction)THPVariable_new_empty, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_full", (PyCFunction)THPVariable_new_full, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_ones", (PyCFunction)THPVariable_new_ones, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_tensor", (PyCFunction)THPVariable_new_tensor, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"new_zeros", (PyCFunction)THPVariable_new_zeros, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"numpy", (PyCFunction)THPVariable_numpy, METH_NOARGS, NULL},
|
|
{"record_stream", (PyCFunction)THPVariable_record_stream, METH_O, NULL},
|
|
{"requires_grad_", (PyCFunction)THPVariable_requires_grad_, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"short", (PyCFunction)THPVariable_short, METH_NOARGS, NULL},
|
|
{"size", (PyCFunction)THPVariable_size, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"storage", (PyCFunction)THPVariable_storage, METH_NOARGS, NULL},
|
|
{"storage_offset", (PyCFunction)THPVariable_storage_offset, METH_NOARGS, NULL},
|
|
{"storage_type", (PyCFunction)THPVariable_storage_type, METH_NOARGS, NULL},
|
|
{"stride", (PyCFunction)THPVariable_stride, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"to", (PyCFunction)THPVariable_to, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{"tolist", (PyCFunction)THPVariable_tolist, METH_NOARGS, NULL},
|
|
{"type", (PyCFunction)THPVariable_type, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
${py_method_defs}
|
|
{NULL}
|
|
};
|
|
|
|
}} // namespace torch::autograd
|