Summary:
Refactor foreach APIs to use overloads in case of scalar list inputs.
Tested via unit tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45673
Reviewed By: heitorschueroff
Differential Revision: D24053424
Pulled By: izdeby
fbshipit-source-id: 35976cc50b4acfe228a32ed26cede579d5621cde
Summary:
The record_stream method was hard coded for CUDA device. Define the record_stream in the native_functions.yaml to enable the dynamic dispatch to different end device.
Fixes https://github.com/pytorch/pytorch/issues/36556
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44301
Reviewed By: glaringlee
Differential Revision: D23763954
Pulled By: ezyang
fbshipit-source-id: e6d24f5e7892b56101fa858a6cad2abc5cdc4293
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45665Fixes#43944
Note that the codegen doesn't use a proper parser so, in the same way as with lists, the string `, ` cannot appear in defaults or it will be interpreted as a splitting point between arguments.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D24141835
Pulled By: ezyang
fbshipit-source-id: 578127861fd2504917f4486c44100491a2c40343
Summary:
In this PR:
1) Added binary operations with ScalarLists.
2) Fixed _foreach_div(...) bug in native_functions
3) Covered all possible cases with scalars and scalar lists in tests
4) [minor] fixed bug in native_functions by adding "use_c10_dispatcher: full" to all _foreach functions
tested via unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44743
Reviewed By: bwasti, malfet
Differential Revision: D23753711
Pulled By: izdeby
fbshipit-source-id: bf3e8c54bc07867e8f6e82b5d3d35ff8e99b5a0a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43248
We add the support of __torch_function__ override for C++ custom op. The logic is the same as the other components, like torch.nn.Module.
Refactored some code a little bit to make it reusable.
Test Plan: buck test //caffe2/test:fx -- test_torch_custom_ops
Reviewed By: bradleyhd
Differential Revision: D23203204
fbshipit-source-id: c462a86e407e46c777171da32d7a40860acf061e
Summary:
According to pytorch/rfcs#3
From the goals in the RFC:
1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
(so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)
This PR makes the following changes:
1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.
TODO:
- [x] Sequence Methods
- [x] Docs
- [x] Tests
Closes https://github.com/pytorch/pytorch/issues/28361
Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091
Reviewed By: ngimel
Differential Revision: D22765678
Pulled By: ezyang
fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41575
Fixes https://github.com/pytorch/pytorch/issues/34294
This updates the C++ argument parser to correctly handle `TensorList` operands. I've also included a number of updates to the testing infrastructure, this is because we're now doing a much more careful job of testing the signatures of aten kernels, using the type information about the arguments as read in from `Declarations.yaml`. The changes to the tests are required because we're now only checking for `__torch_function__` attributes on `Tensor`, `Optional[Tensor]` and elements of `TensorList` operands, whereas before we were checking for `__torch_function__` on all operands, so the relatively simplistic approach the tests were using before -- assuming all positional arguments might be tensors -- doesn't work anymore. I now think that checking for `__torch_function__` on all operands was a mistake in the original design.
The updates to the signatures of the `lambda` functions are to handle this new, more stringent checking of signatures.
I also added override support for `torch.nn.functional.threshold` `torch.nn.functional.layer_norm`, which did not yet have python-level support.
Benchmarks are still WIP.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34725
Reviewed By: mruberry
Differential Revision: D22357738
Pulled By: ezyang
fbshipit-source-id: 0e7f4a58517867b2e3f193a0a8390e2ed294e1f3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37175
ghstack-source-id: 106938114
Test Plan: Upcoming diffs use this for upsampling.
Differential Revision: D21209994
fbshipit-source-id: 1a71c07e45e28772a2bbe450b68280dcc0fe2def
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40187
There were two issues:
1) The hand-written definition included an ambiguous default, which made the deprecated signature not selected. This didn't match the handwritten torch.nonzero, now they do.
2) A parsing bug for empty argument lists meant the signature wasn't being marked as deprecated.
Test Plan: Imported from OSS
Differential Revision: D22118236
Pulled By: gchanan
fbshipit-source-id: a433ce9069fef28aea97cbd76f2adf5a285abd73
Summary:
Since the last one was apparently reverted.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35530
Differential Revision: D20777341
Pulled By: ezyang
fbshipit-source-id: 6aaaf2a0755359074ae3d0efe32018d78dafe976
Summary:
Per title. See related https://github.com/pytorch/pytorch/pull/34570.
In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases.
New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794
Differential Revision: D20545507
Pulled By: mruberry
fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20509850
Pulled By: mruberry
fbshipit-source-id: 2cd3c828aad67191c77f2ed8470411e246f604f8
Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20497453
Pulled By: mruberry
fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33899
In the issue, we have
```
TypeError("expected %s (got %s)", dispatch_key, toString(other.key_set()).c_str());
```
which results in `dispatch_key` being interpreted as a c-string by `sprintf`. Adding `__attrbute__((format))` to the `TypeError` constructor allows gcc or clang to detect this at compile time. Then `-Werror=format` makes it a hard error at compile time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34019
Differential Revision: D20194842
Pulled By: ezyang
fbshipit-source-id: fa4448916c309d91e3d949fa65bb3aa7cca5c6a8
Summary:
This adds `__torch_function__` support for all functions in `torch.functional` and `torch.nn.functional`.
The changes to C++ code and codegen scripts are to facilitate adding `__torch_function__` support for the native functions in `torch._C._nn`. Note that I moved the `handle_torch_function` C++ function to a header that both `python_torch_functions.cpp` and `python_nn_functions.cpp` include. The changes to `python_nn_functions.cpp` mirror the changes I made to `python_torch_functions.cpp` when `__torch_function__` support was first added in https://github.com/pytorch/pytorch/issues/27064. Due to the somewhat different way the `torch._C` and `torch._C._nn` namespaces are initialized I needed to create a new static reference to the `torch._C._nn` namespace (`THPNNVariableFunctions`). I'm not sure if that is the best way to do this. In principle I could import these namespaces in each kernel and avoid the global variable but that would have a runtime cost.
I added `__torch_function__` support to the Python functions in `torch.nn.functional` following the approach in https://github.com/pytorch/pytorch/issues/32194.
I re-enabled the test that checks if all functions in the `torch` namespace are explicitly tested for `__torch_function__` support. I also generalized the check to work for `torch.functional` and `torch.nn.functional` as well. This test was explicitly disabled in https://github.com/pytorch/pytorch/issues/30730 and I'm happy to disable it again if you think that's appropriate. I figured now was as good a time as any to try to re-enable it.
Finally I adjusted the existing torch API tests to suppress deprecation warnings and add keyword arguments used by some of the code in `torch.nn.functional` that were missed when I originally added the tests in https://github.com/pytorch/pytorch/issues/27064.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32799
Differential Revision: D19956809
Pulled By: ezyang
fbshipit-source-id: 40d34e0109cc4b9f3ef62f409d2d35a1d84e3d22
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32907
All op-specific information used in this logic was available to the
parser itself, so the check can be done in that context, no codegen
needed.
No change in the warning behavior itself, mod minor formatting tweak -
passes existing tests. Saves like ~275K binary size on mac:
```
-rwxr-xr-x 1 bhosmer 1876110778 16502064 Feb 1 00:43 torch/lib/libtorch_python.dylib
-rwxr-xr-x 1 bhosmer 1876110778 16247888 Feb 1 00:44 torch/lib/libtorch_python.dylib
```
[codegen diff](https://github.com/bhosmer/scratch/compare/deprecation_warning_before...deprecation_warning_after)
More important than the size savings is the minimization of codegen. Ideally the generated artifact should express distinctive per-op properties in as minimal a form as practically possible - e.g. here instead of generating check-and-warn behavior into every binding, we generate only the data that triggers the behavior in the parser. (And actually we were generating it already.)
Test Plan: Imported from OSS
Differential Revision: D19679928
Pulled By: bhosmer
fbshipit-source-id: cf0140573118430720c6b797c762fe5be98acd86
Summary:
Continuation of https://github.com/pytorch/pytorch/issues/31514, fixes https://github.com/pytorch/pytorch/issues/28430
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32009
Test Plan:
I verified that the deprecation warnings only occur once on a relevant workflow. Built with:
```
buck build mode/opt //vision/fair/detectron2/tools:train_net
```
Ran with:
```
DETECTRON2_ENV_MODULE=detectron2.fb.env ~/local/train_net.par --config-file configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml --num-gpus 1 SOLVER.IMS_PER_BATCH 2
```
Inspected log:
```
[01/14 07:28:13 d2.engine.train_loop]: Starting training from iteration 0
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1299: UserWarning: This overload of add is deprecated:
add(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add(Tensor other, Number alpha)
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1334: UserWarning: This overload of add_ is deprecated:
add_(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add_(Tensor other, Number alpha)
[01/14 07:28:25 d2.utils.events]: eta: 0:00:10 iter: 19 total_loss: 1.699 loss_cls: 1.185 loss_box_reg: 0.501 time: 0.5020 data_time: 0.0224 lr: 0.000100 max_mem: 3722M
[01/14 07:28:35 fvcore.common.checkpoint]: Saving checkpoint to ./output/model_final.pth
```
Differential Revision: D19373523
Pulled By: ezyang
fbshipit-source-id: 75756de129645501f43ecc4e3bf8cc0f78c40b90
Summary:
Fixes https://github.com/pytorch/pytorch/issues/28430
The unpythonic signatures for functions such as `torch.addcdiv` are already seperated in [`deprecated.yaml`] and the signatures marked as deprecated in `PythonArgParser`. However, nothing was done with this information previously. So, this now emits a warning when the deprecated signatures are used.
One minor complication is that if all arguments are passed as keyword args then there is nothing to differentiate the deprecated overload. This can lead to false warnings being emitted. So, I've also modified `PythonArgParser` to prefer non-deprecated signatures.
[`deprecated.yaml`]: https://github.com/pytorch/pytorch/blob/master/tools/autograd/deprecated.yaml
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31514
Differential Revision: D19298735
Pulled By: ezyang
fbshipit-source-id: 03cb78af17658eaab9d577cd2497c6f413f07647
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117
After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.
I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```
Test Plan: - wait for CI
Differential Revision: D18934952
Pulled By: zou3519
fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894
This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.
Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros
Reasons for not removing the macros:
- potential for feature flagging
Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.
In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.
[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.
[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.
Test Plan: - wait for CI
Differential Revision: D18858543
Pulled By: zou3519
fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.
I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730
Differential Revision: D18813270
Pulled By: ezyang
fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29213
A trivial use of make_variable is one where requires_grad=False. This
transformation is not technically semantics preserving, as make_variable
will create a shallow copy of the tensor in question; however, I
am guessing that we have the invariant that we don't actually make
use of this shallow copy in a nontrivial way.
There were some cases where the surrounding code expected a Variable proper
to be returned; I retained those sites.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353503
Pulled By: ezyang
fbshipit-source-id: 57fe34d82e009c0cc852266fb0b79d6d9c62bb03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620
All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set.
When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch:
- The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted.
- Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type.
- Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()`
- There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with)
Some cleanup that doesn't happen in this patch:
- Eliminating unnecessary uses of `make_variable`
- Eliminating `Tensor::is_variable`
The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions:
- `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access
- `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`.
Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: dreiss
Differential Revision: D18171156
Pulled By: ezyang
fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060
This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.
This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.
The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.
Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.
Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.
My plan is to benchmark a few functions and then post the results in a
comment to this PR.
Test Plan: - [namedtensor ci]
Differential Revision: D17331635
Pulled By: zou3519
fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
Summary:
Improve handling of mixed-type tensor operations.
This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).
For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.
The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst
Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.
See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273
Reviewed By: gchanan
Differential Revision: D16582230
Pulled By: nairbv
fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
Summary:
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: [pytorch-cpu-strided-complex extension](https://gitlab.com/pytorch-complex/pytorch-cpu-strided-complex)
Note: These changes do not support AVX/SSE operations on complex tensors.
Changes so far:
- [x] Added complex support of torch.empty.
- [x] Added complex support of CopyKernels
- [x] Added complex support of BinaryOp kernels
Once these changes are applied the rest of the kernels are pretty easy.
ezyang
I have fixed the issues in the original [PR: 25373](https://github.com/pytorch/pytorch/pull/25373).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25534
Differential Revision: D17188390
Pulled By: ezyang
fbshipit-source-id: ade9fb00b2caa89b0f66a4de70a662b62db13a8c