mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620 All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set. When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch: - The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted. - Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type. - Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()` - There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with) Some cleanup that doesn't happen in this patch: - Eliminating unnecessary uses of `make_variable` - Eliminating `Tensor::is_variable` The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions: - `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access - `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`. Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: dreiss Differential Revision: D18171156 Pulled By: ezyang fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
707 lines
22 KiB
C++
707 lines
22 KiB
C++
#include <torch/csrc/utils/python_arg_parser.h>
|
|
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Layout.h>
|
|
#include <torch/csrc/MemoryFormat.h>
|
|
#include <torch/csrc/utils/invalid_arguments.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <ATen/core/EnableNamedTensor.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
|
|
static std::unordered_map<std::string, ParameterType> type_map = {
|
|
{"Tensor", ParameterType::TENSOR},
|
|
{"Scalar", ParameterType::SCALAR},
|
|
{"int64_t", ParameterType::INT64},
|
|
{"double", ParameterType::DOUBLE},
|
|
{"complex", ParameterType::COMPLEX},
|
|
{"TensorList", ParameterType::TENSOR_LIST},
|
|
{"IntArrayRef", ParameterType::INT_LIST},
|
|
{"Generator", ParameterType::GENERATOR},
|
|
{"bool", ParameterType::BOOL},
|
|
{"Storage", ParameterType::STORAGE},
|
|
{"PyObject*", ParameterType::PYOBJECT},
|
|
{"ScalarType", ParameterType::SCALARTYPE},
|
|
{"Layout", ParameterType::LAYOUT},
|
|
{"MemoryFormat", ParameterType::MEMORY_FORMAT},
|
|
{"QScheme", ParameterType::QSCHEME},
|
|
{"Device", ParameterType::DEVICE},
|
|
{"std::string", ParameterType::STRING},
|
|
{"Dimname", ParameterType::DIMNAME},
|
|
{"DimnameList", ParameterType::DIMNAME_LIST},
|
|
};
|
|
|
|
// Default arg name translations for compatibility with NumPy.
|
|
//
|
|
// Example:
|
|
// ```python
|
|
// t = torch.randn(10,10)
|
|
// torch.sum(a=t, axis=0, keepdim=True)
|
|
// ```
|
|
//
|
|
// A vector is necessary, because we might need to try multiple values.
|
|
// In particular, NumPy sometimes uses "x" and sometimes "a" for the main input tensor.
|
|
// Rather than annotate each function separately with whether it should take "x" or "a",
|
|
// just try both.
|
|
//
|
|
// TODO: Allow individual functions to specify non-default translations:
|
|
// For example, `torch.pow` should translate "exponent" to "x2".
|
|
static const std::unordered_map<std::string, std::vector<std::string>> numpy_compatibility_arg_names = {
|
|
{"dim", {"axis"}},
|
|
{"keepdim", {"keepdims"}},
|
|
{"input", {"x", "a", "x1"}},
|
|
{"other", {"x2"}},
|
|
};
|
|
|
|
// TODO: remove this. This is a temporary list of functions that allow Python
|
|
// numbers to bind to Tensors. Some binary ops have separate Tensor and Scalar
|
|
// overloads and binding to the Tensor overload with a number of a different
|
|
// type will trigger a type error.
|
|
//
|
|
// If you modify this, you will need to adjust the blacklist in
|
|
// tools/pyi/gen_pyi.py (and add hardcoded signatures for these
|
|
// functions.)
|
|
static bool should_allow_numbers_as_tensors(const std::string& name) {
|
|
static std::unordered_set<std::string> allowed = {
|
|
"add", "add_", "add_out",
|
|
"div", "div_", "div_out",
|
|
"mul", "mul_", "mul_out",
|
|
"sub", "sub_", "sub_out",
|
|
};
|
|
return allowed.find(name) != allowed.end();
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
|
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
|
|
: optional(false)
|
|
, allow_none(false)
|
|
, keyword_only(keyword_only)
|
|
, size(0)
|
|
, default_scalar(0)
|
|
{
|
|
auto space = fmt.find(' ');
|
|
if (space == std::string::npos) {
|
|
throw std::runtime_error("FunctionParameter(): missing type: " + fmt);
|
|
}
|
|
|
|
auto type_str = fmt.substr(0, space);
|
|
|
|
auto question = type_str.find('?');
|
|
if (question != std::string::npos) {
|
|
allow_none = true;
|
|
type_str = type_str.substr(0, question);
|
|
}
|
|
|
|
// Parse and remove brackets from type_str
|
|
auto bracket = type_str.find('[');
|
|
if (bracket != std::string::npos) {
|
|
auto size_str = type_str.substr(bracket + 1, type_str.length() - bracket - 2);
|
|
size = atoi(size_str.c_str());
|
|
type_str = type_str.substr(0, bracket);
|
|
}
|
|
|
|
auto name_str = fmt.substr(space + 1);
|
|
auto it = type_map.find(type_str);
|
|
if (it == type_map.end()) {
|
|
throw std::runtime_error("FunctionParameter(): invalid type string: " + type_str);
|
|
}
|
|
type_ = it->second;
|
|
|
|
auto eq = name_str.find('=');
|
|
if (eq != std::string::npos) {
|
|
name = name_str.substr(0, eq);
|
|
optional = true;
|
|
set_default_str(name_str.substr(eq + 1));
|
|
} else {
|
|
name = name_str;
|
|
}
|
|
python_name = THPUtils_internString(name);
|
|
auto np_compat_it = numpy_compatibility_arg_names.find(name);
|
|
if (np_compat_it != numpy_compatibility_arg_names.end()) {
|
|
for (const auto& str: np_compat_it->second) {
|
|
numpy_python_names.push_back(THPUtils_internString(str));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool FunctionParameter::check(PyObject* obj) {
|
|
switch (type_) {
|
|
case ParameterType::TENSOR: {
|
|
return THPVariable_Check(obj) || (allow_numbers_as_tensors && THPUtils_checkScalar(obj));
|
|
}
|
|
case ParameterType::SCALAR:
|
|
case ParameterType::COMPLEX:
|
|
if (PyComplex_Check(obj)) {
|
|
return true;
|
|
}
|
|
// fallthrough
|
|
case ParameterType::DOUBLE: {
|
|
if (THPUtils_checkDouble(obj)) {
|
|
return true;
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
auto& var = ((THPVariable*)obj)->cdata;
|
|
return !var.requires_grad() && var.dim() == 0;
|
|
}
|
|
return false;
|
|
}
|
|
case ParameterType::INT64: {
|
|
if (THPUtils_checkLong(obj)) {
|
|
return true;
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
auto& var = ((THPVariable*)obj)->cdata;
|
|
return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) && !var.requires_grad() && var.dim() == 0;
|
|
}
|
|
return false;
|
|
}
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
case ParameterType::DIMNAME: return THPUtils_checkDimname(obj);
|
|
case ParameterType::DIMNAME_LIST: {
|
|
if (THPUtils_checkDimnameList(obj)) {
|
|
return true;
|
|
}
|
|
// if a size is specified (e.g. DimnameList[1]) we also allow passing a single Dimname
|
|
return size == 1 && THPUtils_checkDimname(obj);
|
|
}
|
|
#endif
|
|
case ParameterType::TENSOR_LIST: return six::isTuple(obj) || PyList_Check(obj);
|
|
case ParameterType::INT_LIST: {
|
|
if (PyTuple_Check(obj) || PyList_Check(obj)) {
|
|
return true;
|
|
}
|
|
// if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single int
|
|
return size > 0 && THPUtils_checkLong(obj);
|
|
}
|
|
case ParameterType::GENERATOR: return THPGenerator_Check(obj);
|
|
case ParameterType::BOOL: return PyBool_Check(obj);
|
|
case ParameterType::STORAGE: return isStorage(obj);
|
|
case ParameterType::PYOBJECT: return true;
|
|
case ParameterType::SCALARTYPE: return THPDtype_Check(obj) || THPPythonScalarType_Check(obj);
|
|
case ParameterType::LAYOUT: return THPLayout_Check(obj);
|
|
case ParameterType::MEMORY_FORMAT: return THPMemoryFormat_Check(obj);
|
|
case ParameterType::QSCHEME: return THPQScheme_Check(obj);
|
|
case ParameterType::DEVICE:
|
|
return THPUtils_checkLong(obj) || THPUtils_checkString(obj) || THPDevice_Check(obj);
|
|
case ParameterType::STRING: return THPUtils_checkString(obj);
|
|
default: throw std::runtime_error("unknown parameter type");
|
|
}
|
|
}
|
|
|
|
std::string FunctionParameter::type_name() const {
|
|
switch (type_) {
|
|
case ParameterType::TENSOR: return "Tensor";
|
|
case ParameterType::SCALAR: return "Number";
|
|
case ParameterType::INT64: return "int";
|
|
case ParameterType::DOUBLE: return "float";
|
|
case ParameterType::COMPLEX: return "complex";
|
|
case ParameterType::TENSOR_LIST: return "tuple of Tensors";
|
|
case ParameterType::INT_LIST: return "tuple of ints";
|
|
case ParameterType::GENERATOR: return "torch.Generator";
|
|
case ParameterType::BOOL: return "bool";
|
|
case ParameterType::STORAGE: return "torch.Storage";
|
|
case ParameterType::PYOBJECT: return "object";
|
|
case ParameterType::SCALARTYPE: return "torch.dtype";
|
|
case ParameterType::LAYOUT: return "torch.layout";
|
|
case ParameterType::MEMORY_FORMAT: return "torch.memory_format";
|
|
case ParameterType::QSCHEME: return "torch.qscheme";
|
|
case ParameterType::DEVICE: return "torch.device";
|
|
case ParameterType::STRING: return "str";
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
case ParameterType::DIMNAME: return "name";
|
|
case ParameterType::DIMNAME_LIST: return "tuple of names";
|
|
#endif
|
|
default: throw std::runtime_error("unknown parameter type");
|
|
}
|
|
}
|
|
|
|
static inline c10::optional<int64_t> parse_as_integer(const std::string& s) {
|
|
if (s.empty())
|
|
return c10::nullopt;
|
|
char *str_end;
|
|
long ans = strtol(s.c_str(), &str_end, 0);
|
|
// *str_end == 0 if the entire string was parsed as an integer.
|
|
return (*str_end == 0) ? c10::optional<int64_t>(ans) : c10::nullopt;
|
|
}
|
|
|
|
/*
|
|
Parse default value of IntArrayRef declared at native_functions.yaml
|
|
|
|
There are two kinds of default values:
|
|
1. IntArrayRef[2] x=1 (where size=2, value={1,1}
|
|
2. IntArrayRef x={1,2,3} (where size=3, value={1,2,3}, note that there cannot be space after comma since native_parse.py uses ', ' to split args)
|
|
*/
|
|
static inline std::vector<int64_t> parse_intlist_args(const std::string& s, int64_t size) {
|
|
size_t n = s.size();
|
|
|
|
if (s.empty()) return std::vector<int64_t>();
|
|
|
|
// case 1. s is an int (e.g., s=2)
|
|
if (s[0] != '{') {
|
|
return std::vector<int64_t>(size, std::stol(s));
|
|
}
|
|
|
|
// case 2. s is a list of dims (e.g., s={1,2})
|
|
|
|
// since already checked left brace '{' above, here only checks right brace '}'
|
|
TORCH_CHECK(s[n - 1] == '}', "Default value of IntArrayRef is missing right brace '}', found ", s[n - 1]);
|
|
|
|
auto args = std::vector<int64_t>();
|
|
std::istringstream ss(s.substr(1, s.length() - 2)); // exclude '{' and '}'
|
|
std::string tok;
|
|
|
|
while(std::getline(ss, tok, ',')) {
|
|
args.emplace_back(std::stol(tok));
|
|
}
|
|
return args;
|
|
}
|
|
|
|
void FunctionParameter::set_default_str(const std::string& str) {
|
|
if (str == "None") {
|
|
allow_none = true;
|
|
}
|
|
if (type_ == ParameterType::TENSOR) {
|
|
if (str != "None") {
|
|
throw std::runtime_error("default value for Tensor must be none, got: " + str);
|
|
}
|
|
} else if (type_ == ParameterType::INT64) {
|
|
default_int = atol(str.c_str());
|
|
} else if (type_ == ParameterType::BOOL) {
|
|
default_bool = (str == "True" || str == "true");
|
|
} else if (type_ == ParameterType::DOUBLE) {
|
|
default_double = atof(str.c_str());
|
|
} else if (type_ == ParameterType::COMPLEX) {
|
|
default_complex[0] = atof(str.c_str()); // TODO: parse "x + xj"?
|
|
default_complex[1] = 0;
|
|
} else if (type_ == ParameterType::SCALAR) {
|
|
if (str != "None") {
|
|
// we sometimes rely on integer-vs-float values, e.g. with arange.
|
|
const auto as_integer = parse_as_integer(str);
|
|
default_scalar = as_integer.has_value() ? at::Scalar(as_integer.value()) :
|
|
at::Scalar(atof(str.c_str()));
|
|
}
|
|
} else if (type_ == ParameterType::INT_LIST) {
|
|
if (str != "None") {
|
|
default_intlist = parse_intlist_args(str, size);
|
|
}
|
|
} else if (type_ == ParameterType::SCALARTYPE) {
|
|
if (str == "None") {
|
|
default_scalartype = at::ScalarType::Undefined;
|
|
} else if (str == "torch.int64") {
|
|
default_scalartype = at::ScalarType::Long;
|
|
} else {
|
|
throw std::runtime_error("invalid default value for ScalarType: " + str);
|
|
}
|
|
} else if (type_ == ParameterType::LAYOUT) {
|
|
if (str == "None") {
|
|
default_layout = nullptr;
|
|
} else if (str == "torch.strided") {
|
|
default_layout = torch::getLayout(at::Backend::CPU);
|
|
} else if (str == "torch.sparse_coo") {
|
|
default_layout = torch::getLayout(at::Backend::SparseCPU);
|
|
} else {
|
|
throw std::runtime_error("invalid default value for layout: " + str);
|
|
}
|
|
} else if (type_ == ParameterType::DEVICE) {
|
|
if (str != "None") {
|
|
throw std::runtime_error("invalid device: " + str);
|
|
}
|
|
} else if (type_ == ParameterType::STRING) {
|
|
if (str != "None" || str != "") {
|
|
throw std::runtime_error("invalid default string: " + str);
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionSignature::FunctionSignature(const std::string& fmt)
|
|
: min_args(0)
|
|
, max_args(0)
|
|
, max_pos_args(0)
|
|
, hidden(false)
|
|
, deprecated(false)
|
|
{
|
|
auto open_paren = fmt.find('(');
|
|
if (open_paren == std::string::npos) {
|
|
throw std::runtime_error("missing opening parenthesis: " + fmt);
|
|
}
|
|
name = fmt.substr(0, open_paren);
|
|
|
|
bool allow_numbers_as_tensors = should_allow_numbers_as_tensors(name);
|
|
|
|
auto last_offset = open_paren + 1;
|
|
auto next_offset = last_offset;
|
|
bool keyword_only = false;
|
|
bool done = false;
|
|
while (!done) {
|
|
auto offset = fmt.find(", ", last_offset);
|
|
if (offset == std::string::npos) {
|
|
offset = fmt.find(')', last_offset);
|
|
done = true;
|
|
next_offset = offset + 1;
|
|
} else {
|
|
next_offset = offset + 2;
|
|
}
|
|
if (offset == std::string::npos) {
|
|
throw std::runtime_error("missing closing parenthesis: " + fmt);
|
|
}
|
|
if (offset == last_offset) {
|
|
break;
|
|
}
|
|
|
|
auto param_str = fmt.substr(last_offset, offset - last_offset);
|
|
last_offset = next_offset;
|
|
if (param_str == "*") {
|
|
keyword_only = true;
|
|
} else {
|
|
params.emplace_back(param_str, keyword_only);
|
|
params.back().allow_numbers_as_tensors = allow_numbers_as_tensors;
|
|
}
|
|
}
|
|
|
|
if (fmt.substr(last_offset) == "|deprecated") {
|
|
hidden = true;
|
|
// TODO: raise warning when parsing deprecated signatures
|
|
deprecated = true;
|
|
} else if (fmt.substr(last_offset) == "|hidden") {
|
|
hidden = true;
|
|
}
|
|
|
|
max_args = params.size();
|
|
|
|
// count the number of non-optional args
|
|
for (auto& param : params) {
|
|
if (!param.optional) {
|
|
min_args++;
|
|
}
|
|
if (!param.keyword_only) {
|
|
max_pos_args++;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string FunctionSignature::toString() const {
|
|
std::ostringstream ss;
|
|
ss << "(";
|
|
int i = 0;
|
|
for (auto& param : params) {
|
|
if (i != 0) {
|
|
ss << ", ";
|
|
}
|
|
ss << param.type_name() << " " << param.name;
|
|
i++;
|
|
}
|
|
ss << ")";
|
|
return ss.str();
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void extra_args(const FunctionSignature& signature, ssize_t nargs) {
|
|
auto max_pos_args = signature.max_pos_args;
|
|
auto min_args = signature.min_args;
|
|
if (min_args != max_pos_args) {
|
|
throw TypeError("%s() takes from %d to %d positional arguments but %d were given",
|
|
signature.name.c_str(), min_args, max_pos_args, nargs);
|
|
}
|
|
throw TypeError("%s() takes %d positional argument%s but %d %s given",
|
|
signature.name.c_str(),
|
|
max_pos_args, max_pos_args == 1 ? "" : "s",
|
|
nargs, nargs == 1 ? "was" : "were");
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void missing_args(const FunctionSignature& signature, int idx) {
|
|
int num_missing = 0;
|
|
std::stringstream ss;
|
|
|
|
auto& params = signature.params;
|
|
for (auto it = params.begin() + idx; it != params.end(); ++it) {
|
|
if (!it->optional) {
|
|
if (num_missing > 0) {
|
|
ss << ", ";
|
|
}
|
|
ss << '"' << it->name << '"';
|
|
num_missing++;
|
|
}
|
|
}
|
|
|
|
throw TypeError("%s() missing %d required positional argument%s: %s",
|
|
signature.name.c_str(),
|
|
num_missing,
|
|
num_missing == 1 ? "s" : "",
|
|
ss.str().c_str());
|
|
}
|
|
|
|
static ssize_t find_param(FunctionSignature& signature, PyObject* name) {
|
|
ssize_t i = 0;
|
|
for (auto& param : signature.params) {
|
|
int cmp = PyObject_RichCompareBool(name, param.python_name, Py_EQ);
|
|
if (cmp < 0) {
|
|
throw python_error();
|
|
} else if (cmp) {
|
|
return i;
|
|
}
|
|
i++;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void extra_kwargs(FunctionSignature& signature, PyObject* kwargs, ssize_t num_pos_args) {
|
|
PyObject *key, *value;
|
|
ssize_t pos = 0;
|
|
|
|
while (PyDict_Next(kwargs, &pos, &key, &value)) {
|
|
if (!THPUtils_checkString(key)) {
|
|
throw TypeError("keywords must be strings");
|
|
}
|
|
|
|
auto param_idx = find_param(signature, key);
|
|
if (param_idx < 0) {
|
|
throw TypeError("%s() got an unexpected keyword argument '%s'",
|
|
signature.name.c_str(), THPUtils_unpackString(key).c_str());
|
|
}
|
|
|
|
if (param_idx < num_pos_args) {
|
|
throw TypeError("%s() got multiple values for argument '%s'",
|
|
signature.name.c_str(), THPUtils_unpackString(key).c_str());
|
|
}
|
|
}
|
|
|
|
// this should never be hit
|
|
throw TypeError("invalid keyword arguments");
|
|
}
|
|
|
|
bool FunctionSignature::parse(PyObject* args, PyObject* kwargs, PyObject* dst[],
|
|
bool raise_exception) {
|
|
auto nargs = PyTuple_GET_SIZE(args);
|
|
ssize_t remaining_kwargs = kwargs ? PyDict_Size(kwargs) : 0;
|
|
ssize_t arg_pos = 0;
|
|
bool allow_varargs_intlist = false;
|
|
|
|
// if there is a single positional IntArrayRef argument, i.e. expand(..), view(...),
|
|
// allow a var-args style IntArrayRef, so expand(5,3) behaves as expand((5,3))
|
|
if (max_pos_args == 1 && params[0].type_ == ParameterType::INT_LIST) {
|
|
allow_varargs_intlist = true;
|
|
}
|
|
|
|
if (nargs > max_pos_args && !allow_varargs_intlist) {
|
|
if (raise_exception) {
|
|
// foo() takes takes 2 positional arguments but 3 were given
|
|
extra_args(*this, nargs);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int i = 0;
|
|
for (auto& param : params) {
|
|
PyObject* obj = nullptr;
|
|
bool is_kwd = false;
|
|
if (arg_pos < nargs) {
|
|
// extra positional args given after single positional IntArrayRef arg
|
|
if (param.keyword_only) {
|
|
if (raise_exception) {
|
|
extra_args(*this, nargs);
|
|
}
|
|
return false;
|
|
}
|
|
obj = PyTuple_GET_ITEM(args, arg_pos);
|
|
} else if (kwargs) {
|
|
obj = PyDict_GetItem(kwargs, param.python_name);
|
|
for (PyObject *numpy_name: param.numpy_python_names) {
|
|
if (obj) {
|
|
break;
|
|
}
|
|
obj = PyDict_GetItem(kwargs, numpy_name);
|
|
}
|
|
is_kwd = true;
|
|
}
|
|
|
|
if ((!obj && param.optional) || (obj == Py_None && param.allow_none)) {
|
|
dst[i++] = nullptr;
|
|
} else if (!obj) {
|
|
if (raise_exception) {
|
|
// foo() missing 1 required positional argument: "b"
|
|
missing_args(*this, i);
|
|
}
|
|
return false;
|
|
} else if (param.check(obj)) {
|
|
dst[i++] = obj;
|
|
// XXX: the Variable check is necessary because sizes become tensors when
|
|
// tracer is enabled. This behavior easily leads to ambiguities, and we
|
|
// should avoid having complex signatures that make use of it...
|
|
} else if (allow_varargs_intlist && arg_pos == 0 && !is_kwd &&
|
|
THPUtils_checkIndex(obj)) {
|
|
// take all positional arguments as this parameter
|
|
// e.g. permute(1, 2, 3) -> permute((1, 2, 3))
|
|
dst[i++] = args;
|
|
arg_pos = nargs;
|
|
continue;
|
|
} else if (raise_exception) {
|
|
if (is_kwd) {
|
|
// foo(): argument 'other' must be str, not int
|
|
throw TypeError("%s(): argument '%s' must be %s, not %s",
|
|
name.c_str(), param.name.c_str(), param.type_name().c_str(),
|
|
Py_TYPE(obj)->tp_name);
|
|
} else {
|
|
// foo(): argument 'other' (position 2) must be str, not int
|
|
throw TypeError("%s(): argument '%s' (position %d) must be %s, not %s",
|
|
name.c_str(), param.name.c_str(), arg_pos + 1,
|
|
param.type_name().c_str(), Py_TYPE(obj)->tp_name);
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (!is_kwd) {
|
|
arg_pos++;
|
|
} else if (obj) {
|
|
remaining_kwargs--;
|
|
}
|
|
}
|
|
|
|
if (remaining_kwargs > 0) {
|
|
if (raise_exception) {
|
|
// foo() got an unexpected keyword argument "b"
|
|
extra_kwargs(*this, kwargs, nargs);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
PythonArgParser::PythonArgParser(std::vector<std::string> fmts, bool traceable)
|
|
: max_args(0)
|
|
, traceable(traceable)
|
|
{
|
|
for (auto& fmt : fmts) {
|
|
signatures_.emplace_back(fmt);
|
|
}
|
|
for (auto& signature : signatures_) {
|
|
if (signature.max_args > max_args) {
|
|
max_args = signature.max_args;
|
|
}
|
|
}
|
|
if (signatures_.size() > 0) {
|
|
function_name = signatures_[0].name;
|
|
}
|
|
}
|
|
|
|
PythonArgs PythonArgParser::raw_parse(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]) {
|
|
if (signatures_.size() == 1) {
|
|
auto& signature = signatures_[0];
|
|
signature.parse(args, kwargs, parsed_args, true);
|
|
return PythonArgs(0, traceable, signature, parsed_args);
|
|
}
|
|
|
|
int i = 0;
|
|
for (auto& signature : signatures_) {
|
|
if (signature.parse(args, kwargs, parsed_args, false)) {
|
|
return PythonArgs(i, traceable, signature, parsed_args);
|
|
}
|
|
i++;
|
|
}
|
|
|
|
print_error(args, kwargs, parsed_args);
|
|
}
|
|
|
|
void PythonArgParser::print_error(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]) {
|
|
auto num_args = PyTuple_GET_SIZE(args) + (kwargs ? PyDict_Size(kwargs) : 0);
|
|
std::vector<int> plausible_idxs;
|
|
ssize_t i = 0;
|
|
for (auto& signature : signatures_) {
|
|
if (num_args >= signature.min_args && num_args <= signature.max_args && !signature.hidden) {
|
|
plausible_idxs.push_back(i);
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (plausible_idxs.size() == 1) {
|
|
auto& signature = signatures_[plausible_idxs[0]];
|
|
signature.parse(args, kwargs, parsed_args, true);
|
|
}
|
|
|
|
std::vector<std::string> options;
|
|
for (auto& signature : signatures_) {
|
|
if (!signature.hidden) {
|
|
options.push_back(signature.toString());
|
|
}
|
|
}
|
|
|
|
auto msg = torch::format_invalid_args(args, kwargs, function_name + "()", options);
|
|
throw TypeError("%s", msg.c_str());
|
|
}
|
|
|
|
at::Tensor PythonArgs::tensor_slow(int i) {
|
|
PyObject* obj = args[i];
|
|
if (!obj) {
|
|
return at::Tensor();
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
return reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
|
|
at::Scalar scalar;
|
|
if (PyBool_Check(obj)) {
|
|
scalar = at::Scalar(THPUtils_unpackBool(obj));
|
|
} else if (THPUtils_checkLong(obj)) {
|
|
scalar = at::Scalar(THPUtils_unpackLong(obj));
|
|
}else if (PyComplex_Check(obj)) {
|
|
scalar = at::Scalar(THPUtils_unpackComplexDouble(obj));
|
|
}else if (THPUtils_checkDouble(obj)) {
|
|
scalar = at::Scalar(THPUtils_unpackDouble(obj));
|
|
} else {
|
|
// NB: Are you here because you passed None to a Variable method,
|
|
// and you expected an undefined tensor to be returned? Don't add
|
|
// a test for Py_None here; instead, you need to mark the argument
|
|
// as *allowing none*; you can do this by writing 'Tensor?' instead
|
|
// of 'Tensor' in the ATen metadata.
|
|
throw TypeError("expected Tensor as argument %d, but got %s", i,
|
|
Py_TYPE(obj)->tp_name);
|
|
}
|
|
at::Tensor tensor;
|
|
{
|
|
at::AutoNonVariableTypeMode guard;
|
|
tensor = scalar_to_tensor(scalar);
|
|
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
|
|
}
|
|
return autograd::make_variable(tensor);
|
|
}
|
|
|
|
at::Scalar PythonArgs::scalar_slow(int i) {
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
|
|
auto& var = THPVariable_Unpack(args[i]);
|
|
jit::tracer::ArgumentStash::stashValue(
|
|
signature.params[i].name, idx, var, jit::NumberType::get());
|
|
}
|
|
|
|
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't currently
|
|
// handle most NumPy scalar types except np.float64.
|
|
if (THPVariable_Check(args[i])) {
|
|
return ((THPVariable*)args[i])->cdata.item();
|
|
}
|
|
|
|
if (THPUtils_checkLong(args[i])) {
|
|
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(args[i])));
|
|
}
|
|
|
|
if (PyBool_Check(args[i])) {
|
|
return at::Scalar(THPUtils_unpackBool(args[i]));
|
|
}
|
|
|
|
if (PyComplex_Check(args[i])) {
|
|
return at::Scalar(THPUtils_unpackComplexDouble(args[i]));
|
|
}
|
|
return at::Scalar(THPUtils_unpackDouble(args[i]));
|
|
}
|
|
|
|
} // namespace torch
|