pytorch/torch/csrc/utils/python_arg_parser.cpp
Brian Vaughan 88e4cee3e7 Improve handling of mixed-type tensor operations (#22273)
Summary:
Improve handling of mixed-type tensor operations.

This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).

For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.

The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst

Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.

See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273

Reviewed By: gchanan

Differential Revision: D16582230

Pulled By: nairbv

fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
2019-09-05 18:26:09 -07:00

702 lines
22 KiB
C++

#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/utils/invalid_arguments.h>
#include <torch/csrc/utils/python_strings.h>
#include <ATen/ATen.h>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
static std::unordered_map<std::string, ParameterType> type_map = {
{"Tensor", ParameterType::TENSOR},
{"Scalar", ParameterType::SCALAR},
{"int64_t", ParameterType::INT64},
{"double", ParameterType::DOUBLE},
{"complex", ParameterType::COMPLEX},
{"TensorList", ParameterType::TENSOR_LIST},
{"IntArrayRef", ParameterType::INT_LIST},
{"Generator", ParameterType::GENERATOR},
{"bool", ParameterType::BOOL},
{"Storage", ParameterType::STORAGE},
{"PyObject*", ParameterType::PYOBJECT},
{"ScalarType", ParameterType::SCALARTYPE},
{"Layout", ParameterType::LAYOUT},
{"MemoryFormat", ParameterType::MEMORY_FORMAT},
{"QScheme", ParameterType::QSCHEME},
{"Device", ParameterType::DEVICE},
{"std::string", ParameterType::STRING},
{"Dimname", ParameterType::DIMNAME},
{"DimnameList", ParameterType::DIMNAME_LIST},
};
// Default arg name translations for compatibility with NumPy.
//
// Example:
// ```python
// t = torch.randn(10,10)
// torch.sum(a=t, axis=0, keepdim=True)
// ```
//
// A vector is necessary, because we might need to try multiple values.
// In particular, NumPy sometimes uses "x" and sometimes "a" for the main input tensor.
// Rather than annotate each function separately with whether it should take "x" or "a",
// just try both.
//
// TODO: Allow individual functions to specify non-default translations:
// For example, `torch.pow` should translate "exponent" to "x2".
static const std::unordered_map<std::string, std::vector<std::string>> numpy_compatibility_arg_names = {
{"dim", {"axis"}},
{"keepdim", {"keepdims"}},
{"input", {"x", "a", "x1"}},
{"other", {"x2"}},
};
// TODO: remove this. This is a temporary list of functions that allow Python
// numbers to bind to Tensors. Some binary ops have separate Tensor and Scalar
// overloads and binding to the Tensor overload with a number of a different
// type will trigger a type error.
//
// If you modify this, you will need to adjust the blacklist in
// tools/pyi/gen_pyi.py (and add hardcoded signatures for these
// functions.)
static bool should_allow_numbers_as_tensors(const std::string& name) {
static std::unordered_set<std::string> allowed = {
"add", "add_", "add_out",
"div", "div_", "div_out",
"mul", "mul_", "mul_out",
"sub", "sub_", "sub_out",
};
return allowed.find(name) != allowed.end();
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
: optional(false)
, allow_none(false)
, keyword_only(keyword_only)
, size(0)
, default_scalar(0)
{
auto space = fmt.find(' ');
if (space == std::string::npos) {
throw std::runtime_error("FunctionParameter(): missing type: " + fmt);
}
auto type_str = fmt.substr(0, space);
auto question = type_str.find('?');
if (question != std::string::npos) {
allow_none = true;
type_str = type_str.substr(0, question);
}
// Parse and remove brackets from type_str
auto bracket = type_str.find('[');
if (bracket != std::string::npos) {
auto size_str = type_str.substr(bracket + 1, type_str.length() - bracket - 2);
size = atoi(size_str.c_str());
type_str = type_str.substr(0, bracket);
}
auto name_str = fmt.substr(space + 1);
auto it = type_map.find(type_str);
if (it == type_map.end()) {
throw std::runtime_error("FunctionParameter(): invalid type string: " + type_str);
}
type_ = it->second;
auto eq = name_str.find('=');
if (eq != std::string::npos) {
name = name_str.substr(0, eq);
optional = true;
set_default_str(name_str.substr(eq + 1));
} else {
name = name_str;
}
python_name = THPUtils_internString(name);
auto np_compat_it = numpy_compatibility_arg_names.find(name);
if (np_compat_it != numpy_compatibility_arg_names.end()) {
for (const auto& str: np_compat_it->second) {
numpy_python_names.push_back(THPUtils_internString(str));
}
}
}
bool FunctionParameter::check(PyObject* obj) {
switch (type_) {
case ParameterType::TENSOR: {
return THPVariable_Check(obj) || (allow_numbers_as_tensors && THPUtils_checkScalar(obj));
}
case ParameterType::SCALAR:
case ParameterType::COMPLEX:
if (PyComplex_Check(obj)) {
return true;
}
// fallthrough
case ParameterType::DOUBLE: {
if (THPUtils_checkDouble(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
auto& var = ((THPVariable*)obj)->cdata;
return !var.requires_grad() && var.dim() == 0;
}
return false;
}
case ParameterType::INT64: {
if (THPUtils_checkLong(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
auto& var = ((THPVariable*)obj)->cdata;
return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) && !var.requires_grad() && var.dim() == 0;
}
return false;
}
#ifdef BUILD_NAMEDTENSOR
case ParameterType::DIMNAME: return THPUtils_checkDimname(obj);
case ParameterType::DIMNAME_LIST: {
if (THPUtils_checkDimnameList(obj)) {
return true;
}
// if a size is specified (e.g. DimnameList[1]) we also allow passing a single Dimname
return size == 1 && THPUtils_checkDimname(obj);
}
#endif
case ParameterType::TENSOR_LIST: return six::isTuple(obj) || PyList_Check(obj);
case ParameterType::INT_LIST: {
if (PyTuple_Check(obj) || PyList_Check(obj)) {
return true;
}
// if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single int
return size > 0 && THPUtils_checkLong(obj);
}
case ParameterType::GENERATOR: return THPGenerator_Check(obj);
case ParameterType::BOOL: return PyBool_Check(obj);
case ParameterType::STORAGE: return isStorage(obj);
case ParameterType::PYOBJECT: return true;
case ParameterType::SCALARTYPE: return THPDtype_Check(obj) || THPPythonScalarType_Check(obj);
case ParameterType::LAYOUT: return THPLayout_Check(obj);
case ParameterType::MEMORY_FORMAT: return THPMemoryFormat_Check(obj);
case ParameterType::QSCHEME: return THPQScheme_Check(obj);
case ParameterType::DEVICE:
return THPUtils_checkLong(obj) || THPUtils_checkString(obj) || THPDevice_Check(obj);
case ParameterType::STRING: return THPUtils_checkString(obj);
default: throw std::runtime_error("unknown parameter type");
}
}
std::string FunctionParameter::type_name() const {
switch (type_) {
case ParameterType::TENSOR: return "Tensor";
case ParameterType::SCALAR: return "Number";
case ParameterType::INT64: return "int";
case ParameterType::DOUBLE: return "float";
case ParameterType::COMPLEX: return "complex";
case ParameterType::TENSOR_LIST: return "tuple of Tensors";
case ParameterType::INT_LIST: return "tuple of ints";
case ParameterType::GENERATOR: return "torch.Generator";
case ParameterType::BOOL: return "bool";
case ParameterType::STORAGE: return "torch.Storage";
case ParameterType::PYOBJECT: return "object";
case ParameterType::SCALARTYPE: return "torch.dtype";
case ParameterType::LAYOUT: return "torch.layout";
case ParameterType::MEMORY_FORMAT: return "torch.memory_format";
case ParameterType::QSCHEME: return "torch.qscheme";
case ParameterType::DEVICE: return "torch.device";
case ParameterType::STRING: return "str";
#ifdef BUILD_NAMEDTENSOR
case ParameterType::DIMNAME: return "name";
case ParameterType::DIMNAME_LIST: return "tuple of names";
#endif
default: throw std::runtime_error("unknown parameter type");
}
}
static inline c10::optional<int64_t> parse_as_integer(const std::string& s) {
if (s.empty())
return c10::nullopt;
char *str_end;
long ans = strtol(s.c_str(), &str_end, 0);
// *str_end == 0 if the entire string was parsed as an integer.
return (*str_end == 0) ? c10::optional<int64_t>(ans) : c10::nullopt;
}
/*
Parse default value of IntArrayRef declared at native_functions.yaml
There are two kinds of default values:
1. IntArrayRef[2] x=1 (where size=2, value={1,1}
2. IntArrayRef x={1,2,3} (where size=3, value={1,2,3}, note that there cannot be space after comma since native_parse.py uses ', ' to split args)
*/
static inline std::vector<int64_t> parse_intlist_args(const std::string& s, int64_t size) {
size_t n = s.size();
if (s.empty()) return std::vector<int64_t>();
// case 1. s is an int (e.g., s=2)
if (s[0] != '{') {
return std::vector<int64_t>(size, std::stol(s));
}
// case 2. s is a list of dims (e.g., s={1,2})
// since already checked left brace '{' above, here only checks right brace '}'
TORCH_CHECK(s[n - 1] == '}', "Default value of IntArrayRef is missing right brace '}', found ", s[n - 1]);
auto args = std::vector<int64_t>();
std::istringstream ss(s.substr(1, s.length() - 2)); // exclude '{' and '}'
std::string tok;
while(std::getline(ss, tok, ',')) {
args.emplace_back(std::stol(tok));
}
return args;
}
void FunctionParameter::set_default_str(const std::string& str) {
if (str == "None") {
allow_none = true;
}
if (type_ == ParameterType::TENSOR) {
if (str != "None") {
throw std::runtime_error("default value for Tensor must be none, got: " + str);
}
} else if (type_ == ParameterType::INT64) {
default_int = atol(str.c_str());
} else if (type_ == ParameterType::BOOL) {
default_bool = (str == "True" || str == "true");
} else if (type_ == ParameterType::DOUBLE) {
default_double = atof(str.c_str());
} else if (type_ == ParameterType::COMPLEX) {
default_complex[0] = atof(str.c_str()); // TODO: parse "x + xj"?
default_complex[1] = 0;
} else if (type_ == ParameterType::SCALAR) {
if (str != "None") {
// we sometimes rely on integer-vs-float values, e.g. with arange.
const auto as_integer = parse_as_integer(str);
default_scalar = as_integer.has_value() ? at::Scalar(as_integer.value()) :
at::Scalar(atof(str.c_str()));
}
} else if (type_ == ParameterType::INT_LIST) {
if (str != "None") {
default_intlist = parse_intlist_args(str, size);
}
} else if (type_ == ParameterType::SCALARTYPE) {
if (str == "None") {
default_scalartype = at::ScalarType::Undefined;
} else if (str == "torch.int64") {
default_scalartype = at::ScalarType::Long;
} else {
throw std::runtime_error("invalid default value for ScalarType: " + str);
}
} else if (type_ == ParameterType::LAYOUT) {
if (str == "None") {
default_layout = nullptr;
} else if (str == "torch.strided") {
default_layout = torch::getLayout(at::Backend::CPU);
} else if (str == "torch.sparse_coo") {
default_layout = torch::getLayout(at::Backend::SparseCPU);
} else {
throw std::runtime_error("invalid default value for layout: " + str);
}
} else if (type_ == ParameterType::DEVICE) {
if (str != "None") {
throw std::runtime_error("invalid device: " + str);
}
} else if (type_ == ParameterType::STRING) {
if (str != "None" || str != "") {
throw std::runtime_error("invalid default string: " + str);
}
}
}
FunctionSignature::FunctionSignature(const std::string& fmt)
: min_args(0)
, max_args(0)
, max_pos_args(0)
, hidden(false)
, deprecated(false)
{
auto open_paren = fmt.find('(');
if (open_paren == std::string::npos) {
throw std::runtime_error("missing opening parenthesis: " + fmt);
}
name = fmt.substr(0, open_paren);
bool allow_numbers_as_tensors = should_allow_numbers_as_tensors(name);
auto last_offset = open_paren + 1;
auto next_offset = last_offset;
bool keyword_only = false;
bool done = false;
while (!done) {
auto offset = fmt.find(", ", last_offset);
if (offset == std::string::npos) {
offset = fmt.find(')', last_offset);
done = true;
next_offset = offset + 1;
} else {
next_offset = offset + 2;
}
if (offset == std::string::npos) {
throw std::runtime_error("missing closing parenthesis: " + fmt);
}
if (offset == last_offset) {
break;
}
auto param_str = fmt.substr(last_offset, offset - last_offset);
last_offset = next_offset;
if (param_str == "*") {
keyword_only = true;
} else {
params.emplace_back(param_str, keyword_only);
params.back().allow_numbers_as_tensors = allow_numbers_as_tensors;
}
}
if (fmt.substr(last_offset) == "|deprecated") {
hidden = true;
// TODO: raise warning when parsing deprecated signatures
deprecated = true;
} else if (fmt.substr(last_offset) == "|hidden") {
hidden = true;
}
max_args = params.size();
// count the number of non-optional args
for (auto& param : params) {
if (!param.optional) {
min_args++;
}
if (!param.keyword_only) {
max_pos_args++;
}
}
}
std::string FunctionSignature::toString() const {
std::ostringstream ss;
ss << "(";
int i = 0;
for (auto& param : params) {
if (i != 0) {
ss << ", ";
}
ss << param.type_name() << " " << param.name;
i++;
}
ss << ")";
return ss.str();
}
[[noreturn]]
static void extra_args(const FunctionSignature& signature, ssize_t nargs) {
auto max_pos_args = signature.max_pos_args;
auto min_args = signature.min_args;
if (min_args != max_pos_args) {
throw TypeError("%s() takes from %d to %d positional arguments but %d were given",
signature.name.c_str(), min_args, max_pos_args, nargs);
}
throw TypeError("%s() takes %d positional argument%s but %d %s given",
signature.name.c_str(),
max_pos_args, max_pos_args == 1 ? "" : "s",
nargs, nargs == 1 ? "was" : "were");
}
[[noreturn]]
static void missing_args(const FunctionSignature& signature, int idx) {
int num_missing = 0;
std::stringstream ss;
auto& params = signature.params;
for (auto it = params.begin() + idx; it != params.end(); ++it) {
if (!it->optional) {
if (num_missing > 0) {
ss << ", ";
}
ss << '"' << it->name << '"';
num_missing++;
}
}
throw TypeError("%s() missing %d required positional argument%s: %s",
signature.name.c_str(),
num_missing,
num_missing == 1 ? "s" : "",
ss.str().c_str());
}
static ssize_t find_param(FunctionSignature& signature, PyObject* name) {
ssize_t i = 0;
for (auto& param : signature.params) {
int cmp = PyObject_RichCompareBool(name, param.python_name, Py_EQ);
if (cmp < 0) {
throw python_error();
} else if (cmp) {
return i;
}
i++;
}
return -1;
}
[[noreturn]]
static void extra_kwargs(FunctionSignature& signature, PyObject* kwargs, ssize_t num_pos_args) {
PyObject *key, *value;
ssize_t pos = 0;
while (PyDict_Next(kwargs, &pos, &key, &value)) {
if (!THPUtils_checkString(key)) {
throw TypeError("keywords must be strings");
}
auto param_idx = find_param(signature, key);
if (param_idx < 0) {
throw TypeError("%s() got an unexpected keyword argument '%s'",
signature.name.c_str(), THPUtils_unpackString(key).c_str());
}
if (param_idx < num_pos_args) {
throw TypeError("%s() got multiple values for argument '%s'",
signature.name.c_str(), THPUtils_unpackString(key).c_str());
}
}
// this should never be hit
throw TypeError("invalid keyword arguments");
}
bool FunctionSignature::parse(PyObject* args, PyObject* kwargs, PyObject* dst[],
bool raise_exception) {
auto nargs = PyTuple_GET_SIZE(args);
ssize_t remaining_kwargs = kwargs ? PyDict_Size(kwargs) : 0;
ssize_t arg_pos = 0;
bool allow_varargs_intlist = false;
// if there is a single positional IntArrayRef argument, i.e. expand(..), view(...),
// allow a var-args style IntArrayRef, so expand(5,3) behaves as expand((5,3))
if (max_pos_args == 1 && params[0].type_ == ParameterType::INT_LIST) {
allow_varargs_intlist = true;
}
if (nargs > max_pos_args && !allow_varargs_intlist) {
if (raise_exception) {
// foo() takes takes 2 positional arguments but 3 were given
extra_args(*this, nargs);
}
return false;
}
int i = 0;
for (auto& param : params) {
PyObject* obj = nullptr;
bool is_kwd = false;
if (arg_pos < nargs) {
// extra positional args given after single positional IntArrayRef arg
if (param.keyword_only) {
if (raise_exception) {
extra_args(*this, nargs);
}
return false;
}
obj = PyTuple_GET_ITEM(args, arg_pos);
} else if (kwargs) {
obj = PyDict_GetItem(kwargs, param.python_name);
for (PyObject *numpy_name: param.numpy_python_names) {
if (obj) {
break;
}
obj = PyDict_GetItem(kwargs, numpy_name);
}
is_kwd = true;
}
if ((!obj && param.optional) || (obj == Py_None && param.allow_none)) {
dst[i++] = nullptr;
} else if (!obj) {
if (raise_exception) {
// foo() missing 1 required positional argument: "b"
missing_args(*this, i);
}
return false;
} else if (param.check(obj)) {
dst[i++] = obj;
// XXX: the Variable check is necessary because sizes become tensors when
// tracer is enabled. This behavior easily leads to ambiguities, and we
// should avoid having complex signatures that make use of it...
} else if (allow_varargs_intlist && arg_pos == 0 && !is_kwd &&
THPUtils_checkIndex(obj)) {
// take all positional arguments as this parameter
// e.g. permute(1, 2, 3) -> permute((1, 2, 3))
dst[i++] = args;
arg_pos = nargs;
continue;
} else if (raise_exception) {
if (is_kwd) {
// foo(): argument 'other' must be str, not int
throw TypeError("%s(): argument '%s' must be %s, not %s",
name.c_str(), param.name.c_str(), param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
} else {
// foo(): argument 'other' (position 2) must be str, not int
throw TypeError("%s(): argument '%s' (position %d) must be %s, not %s",
name.c_str(), param.name.c_str(), arg_pos + 1,
param.type_name().c_str(), Py_TYPE(obj)->tp_name);
}
} else {
return false;
}
if (!is_kwd) {
arg_pos++;
} else if (obj) {
remaining_kwargs--;
}
}
if (remaining_kwargs > 0) {
if (raise_exception) {
// foo() got an unexpected keyword argument "b"
extra_kwargs(*this, kwargs, nargs);
}
return false;
}
return true;
}
PythonArgParser::PythonArgParser(std::vector<std::string> fmts, bool traceable)
: max_args(0)
, traceable(traceable)
{
for (auto& fmt : fmts) {
signatures_.emplace_back(fmt);
}
for (auto& signature : signatures_) {
if (signature.max_args > max_args) {
max_args = signature.max_args;
}
}
if (signatures_.size() > 0) {
function_name = signatures_[0].name;
}
}
PythonArgs PythonArgParser::raw_parse(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]) {
if (signatures_.size() == 1) {
auto& signature = signatures_[0];
signature.parse(args, kwargs, parsed_args, true);
return PythonArgs(0, traceable, signature, parsed_args);
}
int i = 0;
for (auto& signature : signatures_) {
if (signature.parse(args, kwargs, parsed_args, false)) {
return PythonArgs(i, traceable, signature, parsed_args);
}
i++;
}
print_error(args, kwargs, parsed_args);
}
void PythonArgParser::print_error(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]) {
auto num_args = PyTuple_GET_SIZE(args) + (kwargs ? PyDict_Size(kwargs) : 0);
std::vector<int> plausible_idxs;
ssize_t i = 0;
for (auto& signature : signatures_) {
if (num_args >= signature.min_args && num_args <= signature.max_args && !signature.hidden) {
plausible_idxs.push_back(i);
}
i++;
}
if (plausible_idxs.size() == 1) {
auto& signature = signatures_[plausible_idxs[0]];
signature.parse(args, kwargs, parsed_args, true);
}
std::vector<std::string> options;
for (auto& signature : signatures_) {
if (!signature.hidden) {
options.push_back(signature.toString());
}
}
auto msg = torch::format_invalid_args(args, kwargs, function_name + "()", options);
throw TypeError("%s", msg.c_str());
}
at::Tensor PythonArgs::tensor_slow(int i) {
PyObject* obj = args[i];
if (!obj) {
return at::Tensor();
}
if (THPVariable_Check(obj)) {
return reinterpret_cast<THPVariable*>(obj)->cdata;
}
at::Scalar scalar;
if (PyBool_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackBool(obj));
} else if (THPUtils_checkLong(obj)) {
scalar = at::Scalar(THPUtils_unpackLong(obj));
}else if (PyComplex_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackComplexDouble(obj));
}else if (THPUtils_checkDouble(obj)) {
scalar = at::Scalar(THPUtils_unpackDouble(obj));
} else {
// NB: Are you here because you passed None to a Variable method,
// and you expected an undefined tensor to be returned? Don't add
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
throw TypeError("expected Tensor as argument %d, but got %s", i,
Py_TYPE(obj)->tp_name);
}
auto tensor = scalar_to_tensor(scalar);
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
return autograd::make_variable(tensor);
}
at::Scalar PythonArgs::scalar_slow(int i) {
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, jit::NumberType::get());
}
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't currently
// handle most NumPy scalar types except np.float64.
if (THPVariable_Check(args[i])) {
return ((THPVariable*)args[i])->cdata.item();
}
if (THPUtils_checkLong(args[i])) {
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(args[i])));
}
if (PyBool_Check(args[i])) {
return at::Scalar(THPUtils_unpackBool(args[i]));
}
if (PyComplex_Check(args[i])) {
return at::Scalar(THPUtils_unpackComplexDouble(args[i]));
}
return at::Scalar(THPUtils_unpackDouble(args[i]));
}
} // namespace torch