Commit Graph

21 Commits

Author SHA1 Message Date
Tao Xu
f850d7ef2e [CoreML][OSS] Add Simulator tests (#65076)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65076

ghstack-source-id: 138869950

create a new conda environment - conda create --name coreml python=3.8
conda activate coreml
pip3 install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
pip install coremltools==5.0b5
cd pytorch
git fetch
git checkout gh/xta0/131/head
cd ios/TestApp/benchmark
mkdir ../models
python coreml_backend.py
Test the model_coreml.ptl in the helloworld example

Test Plan:
1. CircleCI
2. Pytorch nightly builds

Reviewed By: hanton

Differential Revision: D30912268

fbshipit-source-id: 52b2ed1ad40e5949ee2755bca113119132dfc914
2021-09-23 14:57:01 -07:00
Hanton Yang
500b24e303 [iOS] enable Metal in the nightly build (#62855)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62855

Test Plan: Test on Private Pod with the [HelloWorld](https://fburl.com/3hiwkkhm) demo

Reviewed By: xta0

Differential Revision: D30174151

Pulled By: hanton

fbshipit-source-id: 22cd8663ac239811bf8ed1c3b6301460d798dbfa
2021-08-10 15:18:58 -07:00
Ilia Cherniavskii
65fad0ebd2 Expand Kineto platform support (ci-all) (#56323)
Summary:
Expanding support to all builds

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56323

Test Plan: CI

Reviewed By: malfet

Differential Revision: D28171478

Pulled By: ilia-cher

fbshipit-source-id: 16bc752d1be3cbaeda5316f5d8a687ae05a83d22
2021-05-05 15:00:01 -07:00
Sam Estep
5bcbbf5373 Lint trailing newlines (#54737)
Summary:
*Context:* https://github.com/pytorch/pytorch/issues/53406 added a lint for trailing whitespace at the ends of lines. However, in order to pass FB-internal lints, that PR also had to normalize the trailing newlines in four of the files it touched. This PR adds an OSS lint to normalize trailing newlines.

The changes to the following files (made in 54847d0adb9be71be4979cead3d9d4c02160e4cd) are the only manually-written parts of this PR:

- `.github/workflows/lint.yml`
- `mypy-strict.ini`
- `tools/README.md`
- `tools/test/test_trailing_newlines.py`
- `tools/trailing_newlines.py`

I would have liked to make this just a shell one-liner like the other three similar lints, but nothing I could find quite fit the bill. Specifically, all the answers I tried from the following Stack Overflow questions were far too slow (at least a minute and a half to run on this entire repository):

- [How to detect file ends in newline?](https://stackoverflow.com/q/38746)
- [How do I find files that do not end with a newline/linefeed?](https://stackoverflow.com/q/4631068)
- [How to list all files in the Git index without newline at end of file](https://stackoverflow.com/q/27624800)
- [Linux - check if there is an empty line at the end of a file [duplicate]](https://stackoverflow.com/q/34943632)
- [git ensure newline at end of each file](https://stackoverflow.com/q/57770972)

To avoid giving false positives during the few days after this PR is merged, we should probably only merge it after https://github.com/pytorch/pytorch/issues/54967.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54737

Test Plan:
Running the shell script from the "Ensure correct trailing newlines" step in the `quick-checks` job of `.github/workflows/lint.yml` should print no output and exit in a fraction of a second with a status of 0. That was not the case prior to this PR, as shown by this failing GHA workflow run on an earlier draft of this PR:

- https://github.com/pytorch/pytorch/runs/2197446987?check_suite_focus=true

In contrast, this run (after correcting the trailing newlines in this PR) succeeded:

- https://github.com/pytorch/pytorch/pull/54737/checks?check_run_id=2197553241

To unit-test `tools/trailing_newlines.py` itself (this is run as part of our "Test tools" GitHub Actions workflow):
```
python tools/test/test_trailing_newlines.py
```

Reviewed By: malfet

Differential Revision: D27409736

Pulled By: samestep

fbshipit-source-id: 46f565227046b39f68349bbd5633105b2d2e9b19
2021-03-30 13:09:52 -07:00
Sam Estep
8c798e0622 Forbid trailing whitespace (#53406)
Summary:
Context: https://github.com/pytorch/pytorch/pull/53299#discussion_r587882857

These are the only hand-written parts of this diff:
- the addition to `.github/workflows/lint.yml`
- the file endings changed in these four files (to appease FB-internal land-blocking lints):
  - `GLOSSARY.md`
  - `aten/src/ATen/core/op_registration/README.md`
  - `scripts/README.md`
  - `torch/csrc/jit/codegen/fuser/README.md`

The rest was generated by running this command (on macOS):
```
git grep -I -l ' $' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' | xargs gsed -i 's/ *$//'
```

I looked over the auto-generated changes and didn't see anything that looked problematic.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53406

Test Plan:
This run (after adding the lint but before removing existing trailing spaces) failed:
- https://github.com/pytorch/pytorch/runs/2043032377

This run (on the tip of this PR) succeeded:
- https://github.com/pytorch/pytorch/runs/2043296348

Reviewed By: walterddr, seemethere

Differential Revision: D26856620

Pulled By: samestep

fbshipit-source-id: 3f0de7f7c2e4b0f1c089eac9b5085a58dd7e0d97
2021-03-05 17:22:55 -08:00
Tao Xu
0de5824f36 [iOS][CI] Upgrade xcode version to 12.0 (#45677)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45677

Test Plan: Imported from OSS

Reviewed By: husthyc

Differential Revision: D24065647

Pulled By: xta0

fbshipit-source-id: f2535b1d93e58cf79e7075bf56b0613a3ded16eb
2020-10-01 16:53:18 -07:00
David Reiss
b7e044f0e5 Re-apply PyTorch pthreadpool changes
Summary:
This re-applies D21232894 (b9d3869df3) and D22162524, plus updates jni_deps in a few places
to avoid breaking host JNI tests.

Test Plan: `buck test @//fbandroid/mode/server //fbandroid/instrumentation_tests/com/facebook/caffe2:host-test`

Reviewed By: xcheng16

Differential Revision: D22199952

fbshipit-source-id: df13eef39c01738637ae8cf7f581d6ccc88d37d5
2020-06-23 19:26:21 -07:00
Kate Mormysh
92d3182c11 Revert D21232894: Unify PyTorch mobile's threadpool usage.
Test Plan: revert-hammer

Differential Revision:
D21232894 (b9d3869df3)

Original commit changeset: 8b3de86247fb

fbshipit-source-id: e6517cfec08f7dd0f4f8877dab62acf1d65afacd
2020-06-23 17:09:14 -07:00
Ashkan Aliabadi
b9d3869df3 Unify PyTorch mobile's threadpool usage. (#37243)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37243

*** Why ***

As it stands, we have two thread pool solutions concurrently in use in PyTorch mobile: (1) the open source pthreadpool library under third_party, and (2) Caffe2's implementation of pthreadpool under caffe2/utils/threadpool.  Since the primary use-case of the latter has been to act as a drop-in replacement for the third party version so as to enable integration and usage from within NNPACK and QNNPACK, Caffe2's implementation is intentionally written to the exact same interface as the third party version.

The original argument in favor of C2's implementation has been improved performance as a result of using spin locks, as opposed to relinquishing the thread's time slot and putting it to sleep - a less expensive operation up to a point.  That seems to have given C2's implementation the upper hand in performance, hence justifying the added maintenance complexity, until the third party version improved in parallel surpassing the efficiency of C2's implementation as I have verified in benchmarks.  With that advantage gone, there is no reason to continue using C2's implementation in PyTorch mobile either from the perspective of performance or code hygiene.  As a matter of fact, there is considerable performance benefit to be had as a result of using the third party version as it currently stands.

This is a tricky change though, mainly because in order to avoid potential performance regressions, of which I have witnessed none but just in abundance of caution, we have decided to continue using the internal C2's implementation whenever building for Caffe2.  Again, this is mainly to avoid potential performance regressions in production C2 use cases even if doing so results in reduced performance as far as I can tell.

So to summarize, today, and as it currently stands, we are using C2's implementation for (1) NNPACK, (2) PyTorch QNNPACK, and (3) ATen parallel_for on mobile builds, while using the third party version of pthreadpool for XNNPACK as XNNPACK does not provide any build options to link against an external implementation unlike NNPACK and QNNPACK do.

The goal of this PR then, is to unify all usage on mobile to the third party implementation both for improved performance and better code hygiene.  This applies to PyTorch's use of NNPACK, QNNPACK, XNNPACK, and mobile's implementation of ATen parallel_for, all getting routed to the
exact same third party implementation in this PR.

Considering that NNPACK, QNNPACK, and XNNPACK are not mobile specific, these benefits carry over to non-mobile builds of PyTorch (but not Caffe2) as well.  The implementation of ATen parallel_for on non-mobile builds remains unchanged.

*** How ***

This is where things get tricky.

A good deal of the build system complexity in this PR arises from our desire to maintain C2's implementation intact for C2's use.

pthreadpool is a C library with no concept of namespaces, which means two copies of the library cannot exist in the same binary or symbol collision will occur violating ODR.  This means that somehow, and based on some condition, we must decide on the choice of a pthreadpool implementation.  In practice, this has become more complicated as a result of all the possible combinations that USE_NNPACK, USE_QNNPACK, USE_PYTORCH_QNNPACK, USE_XNNPACK, USE_SYSTEM_XNNPACK, USE_SYSTEM_PTHREADPOOL and other variables can result in.  Having said that, I have done my best in this PR to surgically cut through this complexity in a way that minimizes the side effects, considering the significance of the performance we are leaving on the table, yet, as a result of this combinatorial explosion explained above I cannot guarantee that every single combination will work as expected on the first try.  I am heavily relying on CI to find any issues as local testing can only go that far.

Having said that, this PR provides a simple non mobile-specific C++ thread pool implementation on top of pthreadpool, namely caffe2::PThreadPool that automatically routes to C2's implementation or the third party version depending on the build configuration.  This simplifies the logic at the cost of pushing the complexity to the build scripts.  From there on, this thread pool is used in aten parallel_for, and NNPACK and family, again, routing all usage of threading to C2 or third party pthreadpool depending on the build configuration.

When it is all said or done, the layering will look like this:

a) aten::parallel_for, uses
b) caffe2::PThreadPool, which uses
c) pthreadpool C API, which delegates to
    c-1) third_party implementation of pthreadpool if that's what the build has requested, and the rabbit hole ends here.
    c-2) C2's implementation of pthreadpool if that's what the build has requested, which itself delegates to
    c-2-1) caffe2::ThreadPool, and the rabbit hole ends here.

NNPACK, and (PyTorch) QNNPACK directly hook into (c). They never go through (b).

Differential Revision: D21232894

Test Plan: Imported from OSS

Reviewed By: dreiss

Pulled By: AshkanAliabadi

fbshipit-source-id: 8b3de86247fbc3a327e811983e082f9d40081354
2020-06-23 16:34:51 -07:00
Tao Xu
6de6041585 [iOS] Disable NNPACK on iOS builds (#39868)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39868

### Summary

why disable NNPACK on iOS

- To stay consistency with our internal version
- It's currently blocking some external users due to its lack support of x86 architecture
    - https://github.com/pytorch/pytorch/issues/32040
    - https://discuss.pytorch.org/t/undefined-symbols-for-architecture-x86-64-for-libtorch-in-swift-unit-test/84552/6
- NNPACK uses fast convolution algorithms (FFT, winograd) to reduce the computational complexity of convolutions with large kernel size. The algorithmic speedup is limited to specific conv params which are unlikely to appear in mobile networks.
- Since XNNPACK has been enabled, it performs much better than NNPACK on depthwise-separable convolutions which is the algorithm being used by most of mobile computer vision networks.

### Test Plan

- CI Checks

Test Plan: Imported from OSS

Differential Revision: D22087365

Pulled By: xta0

fbshipit-source-id: 89a959b0736c1f8703eff10723a8fbd02357fd4a
2020-06-17 01:39:56 -07:00
Tao Xu
8294db8f15 [iOS][CI] Remove org-member from iOS Simulator Builds (#34410)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34410

### Summary

Currently, the iOS jobs are not being run on PRs anymore. This is because all iOS jobs have specified the `org-member` as a context which used to include all pytorch members. But seems like recently this rule has changed. It turns out that only users from the admin group or builder group can have access right to the context values. https://circleci.com/gh/organizations/pytorch/settings#contexts/2b885fc9-ef3a-4b86-8f5a-2e6e22bd0cfe

This PR will remove `org-member` from the iOS simulator build which doesn't require code signing. For the arm64 builds, they'll only be run on master, not on PRs anymore.

### Test plan

- The iOS simulator job should be able to appear in the PR workflow

Test Plan: Imported from OSS

Differential Revision: D20347270

Pulled By: xta0

fbshipit-source-id: 23f37d40160c237dc280e0e82f879c1d601f72ac
2020-03-09 13:22:54 -07:00
Ashkan Aliabadi
6aecfd1e80 Mobile Backend: NHWC memory layout + XNNPACK integration. (#33722)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33722

In order to improve CPU performance on floating-point models on mobile, this PR introduces a new CPU backend for mobile that implements the most common mobile operators with NHWC memory layout support through integration with XNNPACK.

XNNPACK itself, and this codepath, are currently only included in the build, but the actual integration is gated with USE_XNNPACK preprocessor guards.  This preprocessor symbol is intentionally not passed on to the compiler, so as to enable this rollout in multiple stages in follow up PRs.  This changeset will build XNNPACK as part of the build if the identically named USE_XNNPACK CMAKE variable, defaulted to ON, is enabled, but will not actually expose or enable this code path in any other way.

Furthermore, it is worth pointing out that in order to efficiently map models to these operators, some front-end method of exposing this backend to the user is needed.  The less efficient implementation would be to hook these operators into their corresponding native implementations, granted that a series of XNNPACK-specific conditions are met, much like how NNPACK is integrated with PyTorch today for instance.

Having said that, while the above implementation is still expected to outperform NNPACK based on the benchmarks I ran, the above integration would be leave a considerable gap between the performance achieved and the maximum performance potential XNNPACK enables, as it does not provide a way to compute and factor out one-time operations out of the inner most forward() loop.

The more optimal solution, and one we will  decide on soon, would involve either providing a JIT pass that maps nn operators onto these newly introduced operators, while allowing one-time calculations to be factored out, much like quantized mobile models.  Alternatively, new eager-mode modules can also be introduced that would directly call into these implementations either through c10 or some other mechanism, also allowing for decoupling of op creation from op execution.

This PR does not include any of the front end changes  mentioned above.  Neither does it include the mobile threadpool unification present in the original https://github.com/pytorch/pytorch/issues/30644.  Furthermore, this codepath seems to be faster than NNPACK in a good number of use cases, which can potentially allow us to remove NNPACK from aten to make the codebase a little simpler, granted that there is widespread support for such a move.

Regardless, these changes will be introduced gradually and in a more controlled way in subsequent PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/32509

Test Plan:
Build: CI
Functionality: Not exposed

Reviewed By: dreiss

Differential Revision: D20069796

Pulled By: AshkanAliabadi

fbshipit-source-id: d46c1c91d4bea91979ea5bd46971ced5417d309c
2020-02-24 21:58:56 -08:00
Ashkan Aliabadi
039dc90854 Revert D19521853: [pytorch][PR] Mobile Backend: NHWC memory layout + XNNPACK integration.
Test Plan: revert-hammer

Differential Revision:
D19521853

Original commit changeset: 99a1fab31d0e

fbshipit-source-id: 76dfc1f481797ba2386997533cf19957637687d6
2020-02-23 22:07:19 -08:00
Ashkan Aliabadi
941b42428a Mobile Backend: NHWC memory layout + XNNPACK integration. (#32509)
Summary:
In order to improve CPU performance on floating-point models on mobile, this PR introduces a new CPU backend for mobile that implements the most common mobile operators with NHWC memory layout support through integration with XNNPACK.

XNNPACK itself, and this codepath, are currently only included in the build, but the actual integration is gated with USE_XNNPACK preprocessor guards.  This preprocessor symbol is intentionally not passed on to the compiler, so as to enable this rollout in multiple stages in follow up PRs.  This changeset will build XNNPACK as part of the build if the identically named USE_XNNPACK CMAKE variable, defaulted to ON, is enabled, but will not actually expose or enable this code path in any other way.

Furthermore, it is worth pointing out that in order to efficiently map models to these operators, some front-end method of exposing this backend to the user is needed.  The less efficient implementation would be to hook these operators into their corresponding **native** implementations, granted that a series of XNNPACK-specific conditions are met, much like how NNPACK is integrated with PyTorch today for instance.

Having said that, while the above implementation is still expected to outperform NNPACK based on the benchmarks I ran, the above integration would be leave a considerable gap between the performance achieved and the maximum performance potential XNNPACK enables, as it does not provide a way to compute and factor out one-time operations out of the inner most forward() loop.

The more optimal solution, and one we will  decide on soon, would involve either providing a JIT pass that maps nn operators onto these newly introduced operators, while allowing one-time calculations to be factored out, much like quantized mobile models.  Alternatively, new eager-mode modules can also be introduced that would directly call into these implementations either through c10 or some other mechanism, also allowing for decoupling of op creation from op execution.

This PR does not include any of the front end changes  mentioned above.  Neither does it include the mobile threadpool unification present in the original https://github.com/pytorch/pytorch/issues/30644.  Furthermore, this codepath seems to be faster than NNPACK in a good number of use cases, which can potentially allow us to remove NNPACK from aten to make the codebase a little simpler, granted that there is widespread support for such a move.

Regardless, these changes will be introduced gradually and in a more controlled way in subsequent PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32509

Reviewed By: dreiss

Differential Revision: D19521853

Pulled By: AshkanAliabadi

fbshipit-source-id: 99a1fab31d0ece64961df074003bb852c36acaaa
2020-02-23 19:08:42 -08:00
Brian Wignall
f326045b37 Fix typos, via a Levenshtein-type corrector (#31523)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos, with https://github.com/bwignall/typochecker to help automate the checking.

Uses an updated version of the tool used in https://github.com/pytorch/pytorch/pull/30606 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31523

Differential Revision: D19216749

Pulled By: mrshenli

fbshipit-source-id: 7fd489cb9a77cd7e4950c1046f925d57524960ea
2020-01-17 16:03:19 -08:00
Edward Yang
38986e1dea Split libtorch.so back into libtorch_{cpu,cuda,hip} (#30315)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30315

The new structure is that libtorch_cpu contains the bulk of our
code, and libtorch depends on libtorch_cpu and libtorch_cuda.
This is a reland of https://github.com/pytorch/pytorch/pull/29731 but
I've extracted all of the prep work into separate PRs which can be
landed before this one.

Some things of note:

* torch/csrc/cuda/nccl.cpp was added to the wrong list of SRCS, now fixed (this didn't matter before because previously they were all in the same library)
* The dummy file for libtorch was brought back from the dead; it was previously deleted in #20774
In an initial version of the patch, I forgot to make torch_cuda explicitly depend on torch_cpu. This lead to some very odd errors, most notably "bin/blob_test: hidden symbol `_ZNK6google8protobuf5Arena17OnArenaAllocationEPKSt9type_infom' in lib/libprotobuf.a(arena.cc.o) is referenced by DSO"
* A number of places in Android/iOS builds have to add torch_cuda explicitly as a library, as they do not have transitive dependency calculation working correctly
* I had to torch_cpu/torch_cuda caffe2_interface_library so that they get whole-archived linked into torch when you statically link. And I had to do this in an *exported* fashion because torch needs to depend on torch_cpu_library. In the end I exported everything and removed the redefinition in the Caffe2Config.cmake. However, I am not too sure why the old code did it in this way in the first place; however, it doesn't seem to have broken anything to switch it this way.
* There's some uses of `__HIP_PLATFORM_HCC__` still in `torch_cpu` code, so I had to apply it to that library too (UGH). This manifests as a failer when trying to run the CUDA fuser. This doesn't really matter substantively right now because we still in-place HIPify, but it would be good to fix eventually. This was a bit difficult to debug because of an unrelated HIP bug, see https://github.com/ROCm-Developer-Tools/HIP/issues/1706

Fixes #27215 (as our libraries are smaller), and executes on
part of the plan in #29235.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18790941

Pulled By: ezyang

fbshipit-source-id: 01296f6089d3de5e8365251b490c51e694f2d6c7
2019-12-04 08:04:57 -08:00
Junjie Bai
352731bd6e Revert D18632773: Split libtorch.so back into libtorch_{cpu,cuda,hip}
Test Plan: revert-hammer

Differential Revision:
D18632773

Original commit changeset: ea717c81e0d7

fbshipit-source-id: 18601439f9f81c9f389020e5a0e4e04adb21772d
2019-11-21 15:01:09 -08:00
Edward Yang
ec30d9028a Split libtorch.so back into libtorch_{cpu,cuda,hip} (#29731)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29731

The new structure is that libtorch_cpu contains the bulk of our
code, and libtorch depends on libtorch_cpu and libtorch_cuda.

Some subtleties about the patch:
- There were a few functions that crossed CPU-CUDA boundary without API macros. I just added them, easy enough. An inverse situation was aten/src/THC/THCTensorRandom.cu where we weren't supposed to put API macros directly in a cpp file.
- DispatchStub wasn't getting all of its symbols related to static members on DispatchStub exported properly. I tried a few fixes but in the end I just moved everyone off using DispatchStub to dispatch CUDA/HIP (so they just use normal dispatch for those cases.) Additionally, there were some mistakes where people incorrectly were failing to actually import the declaration of the dispatch stub, so added includes for those cases.
- torch/csrc/cuda/nccl.cpp was added to the wrong list of SRCS, now fixed (this didn't matter before because previously they were all in the same library)
- The dummy file for libtorch was brought back from the dead; it was previously deleted in #20774
- In an initial version of the patch, I forgot to make torch_cuda explicitly depend on torch_cpu. This lead to some very odd errors, most notably "bin/blob_test: hidden symbol `_ZNK6google8protobuf5Arena17OnArenaAllocationEPKSt9type_infom' in lib/l
ibprotobuf.a(arena.cc.o) is referenced by DSO"
- A number of places in Android/iOS builds have to add torch_cuda explicitly as a library, as they do not have transitive dependency calculation working correctly. This situation also happens with custom C++ extensions.
- There's a ROCm compiler bug where extern "C" on functions is not respected. There's a little workaround to handle this.
- Because I was too lazy to check if HIPify was converting TORCH_CUDA_API into TORCH_HIP_API, I just made it so HIP build also triggers the TORCH_CUDA_API macro. Eventually, we should translate and keep the nature of TORCH_CUDA_API constant in all cases.

Fixes #27215 (as our libraries are smaller), and executes on
part of the plan in #29235.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18632773

Pulled By: ezyang

fbshipit-source-id: ea717c81e0d7554ede1dc404108603455a81da82
2019-11-21 11:27:33 -08:00
Tao Xu
636fbcdd0a add benchmark code to iOS TestApp (#28405)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28405

### Summary

As discussed with AshkanAliabadi  and ljk53, the iOS TestApp will share the same benchmark code with Android's speed_benchmark_torch.cpp. This PR is the first part which contains the Objective-C++ code.

The second PR will include the scripts to setup and run the benchmark project. The third PR will include scripts that can automate the whole "build - test - install" process.

There are many ways to run the benchmark project. The easiest way is to use cocoapods. Simply run `pod install`. However, that will pull the 1.3 binary which is not what we want, but we can still use this approach to test the benchmark code. The second PR will contain scripts to run custom builds that we can tweak.

### Test Plan
- Don't break any existing CI jobs  (except for those flaky ones)

Test Plan: Imported from OSS

Differential Revision: D18064187

Pulled By: xta0

fbshipit-source-id: 4cfbb83c045803d8b24bf6d2c110a55871d22962
2019-10-22 12:52:30 -07:00
Tao Xu
52985a3501 Install developer certificate for code signing (#27593)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27593

## Summary

Since the nightly jobs are lack of  testing phases, we don't really have a way to test the binary before uploading it to AWS. To make the work more solid, we need to figure out a way to verify the binary.

Fortunately, the XCode tool chain offers a way to build your app without XCode app, which is the [xcodebuild](https://developer.apple.com/library/archive/technotes/tn2339/_index.html) command. Now we can link our binary to a testing app and run `xcodebuild` to to see if there is any linking error. The PRs below have already done some of the preparation jobs

- [#26261](https://github.com/pytorch/pytorch/pull/26261)
- [#26632](https://github.com/pytorch/pytorch/pull/26632)

The challenge comes when testing the arm64 build as we don't have a way to code-sign our TestApp. Circle CI has a  [tutorial](https://circleci.com/docs/2.0/ios-codesigning/)  but is too complicated to implement. Anyway, I figured out an easier way to do it

1. Disable automatically code sign in XCode
2. Export the encoded developer certificate and provisioning profile to org-context in Circle CI (done)
3. Install the developer certificate to the key chain store on CI machines via Fastlane.
4. Add the testing code to PR jobs and verify the result.
5. Add the testing code to nightly jobs and verify the result.

## Test Plan

- Both PR jobs and nightly jobs can finish successfully.
- `xcodebuild` can finish successfully

Test Plan: Imported from OSS

Differential Revision: D17848814

Pulled By: xta0

fbshipit-source-id: 48353f001c38e61eed13a43943253cae30d8831a
2019-10-09 20:07:30 -07:00
Tao Xu
736c754739 add sdk support for xcodebuild script
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27358

Test Plan: Imported from OSS

Differential Revision: D17757389

Pulled By: xta0

fbshipit-source-id: ed8e470b9c6329b96297ee7c65ba08759251baad
2019-10-03 20:11:08 -07:00