Commit Graph

80 Commits

Author SHA1 Message Date
Xuehai Pan
02715d0876 [BE][5/6] fix typos in test/ (test/dynamo/) (#157639)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157639
Approved by: https://github.com/yewentao256, https://github.com/jansel
ghstack dependencies: #157638
2025-07-06 06:34:25 +00:00
Xuehai Pan
6d5c789ad5 [BE][PYFMT] migrate PYFMT for test/[a-h]*/ to ruff format (#144555)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144555
Approved by: https://github.com/ezyang
ghstack dependencies: #144551, #144554
2025-06-24 04:53:54 +00:00
rzou
2926dd4d8e Stop proxy-ing autograd.Function.ctx into the graph (#152621)
The reason why we did this before is because that's how our older
autograd.Function x Dynamo interaction work, but we've since adopted
newer designs that don't actually need the autograd.Function.ctx proxied
into the graph.

We still need a fx.Proxy for the autograd.Function.ctx object, so
whenever we do I create one via discard_graph_changes.

Test Plan:
- existing tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152621
Approved by: https://github.com/oulgen
2025-05-08 13:32:54 +00:00
William Wen
16e202a38e [dynamo] improved graph break messages for some common graph break sites [1/N] (#146525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146525
Approved by: https://github.com/jansel
2025-02-20 00:08:13 +00:00
Yanbo Liang
229fb0bc83 [Dynamo][autograd.Function] Relax backward speculation strict mode: support .requires_grad (#146742)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146742
Approved by: https://github.com/zou3519
ghstack dependencies: #146571, #146741
2025-02-11 05:39:07 +00:00
Yanbo Liang
f2da810516 [Dynamo][autograd.Function] Relax backward speculation strict mode: support .data (#146741)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146741
Approved by: https://github.com/zou3519
ghstack dependencies: #146571
2025-02-11 05:39:07 +00:00
Yanbo Liang
29523aa113 [Dynamo][autograd.Function] Relax backward speculation strict mode a bit (#146571)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146571
Approved by: https://github.com/zou3519
2025-02-11 05:39:00 +00:00
Yanbo Liang
3355103233 [Dynamo] Supports autograd.Function forward returns constant (#144597)
Fixes #144142

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144597
Approved by: https://github.com/jansel
2025-01-12 03:53:10 +00:00
Tom Ritchford
d25e6e623f Fix unused Python variables in test/[a-d]* (#134665)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134665
Approved by: https://github.com/albanD
2024-12-13 22:13:12 +00:00
Yanbo Liang
dcd16bdc21 [Dynamo][autograd.Function] Use fake tensor prop to infer fwd output (#136184)
Fixes #129963

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136184
Approved by: https://github.com/zou3519
2024-11-26 01:10:08 +00:00
zeshengzong
cb71bcc542 Replace clone.detach with detach.clone (#140264)
Fixes #64532

As state in issue, replace `clone.detach` by `detach.clone`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140264
Approved by: https://github.com/soulitzer
2024-11-13 07:01:02 +00:00
Yuanhao Ji
d6b3ad4de2 [Dynamo] Replace torch._dynamo.optimize() with torch.compile() [2/N] (#140238)
related commits:

- #139706
- #140238
- #140247
- #140253

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140238
Approved by: https://github.com/soulitzer
2024-11-13 05:13:39 +00:00
Yidi Wu
dc3a6a9d08 [hop free symbols][refactor] make create_graph_input always take example_value (#138428)
Code refactoring only. We move the wrap_to_fake_tensor_logic out of wrap_fx_proxy for placeholders to provide the invariant that **all graph inputs must set their example values when creating the inputs**. This invariant helps us to identify all the free symbols in the graph in top-level and sub-graphs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138428
Approved by: https://github.com/ezyang, https://github.com/zou3519
ghstack dependencies: #138345
2024-11-04 22:47:49 +00:00
rzou
11e4232b42 Revert "[Dynamo][autograd.Function] Trace fwd graph under no_grad mode (#134872)" (#137891)
This reverts commit e688b78791.

We're reverting this because:
1) The original PR (#134872) fixed a bug but caused another one. The
   assessment is that the bug it caused is worse than the bug it fixed.
2) it was reverted on the release 2.5 branch, so we want to prevent
   divergence
3) The original author is out-of-office for a while so we don't want the
   divergence to wait until they're back
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137891
Approved by: https://github.com/Skylion007
2024-10-14 20:12:58 +00:00
Yanbo Liang
e688b78791 [Dynamo][autograd.Function] Trace fwd graph under no_grad mode (#134872)
Fixes #134820

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134872
Approved by: https://github.com/zou3519
2024-08-30 22:24:18 +00:00
Yanbo Liang
8693322ef0 [Dynamo][autograd.Function] Support mark_non_differentiable (#134087)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134087
Approved by: https://github.com/zou3519
2024-08-28 08:12:37 +00:00
Yanbo Liang
ff61f55387 [Dynamo][autograd.Function] Supports ctx.set_materialize_grads (#133978)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133978
Approved by: https://github.com/zou3519
2024-08-22 20:06:17 +00:00
Zhengxu Chen
942ffd1b2d Make the __module__ name of HOO to be always "torch.ops.higher_order" (#132775)
Summary: It seems that we can just make this the default so that in the future all the ops printed in the graph should be like torch.ops.higher_order

Test Plan: CI

Differential Revision: D60530900

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132775
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2024-08-08 16:55:09 +00:00
angelayi
a270800f0b [export][reland] Add print_readable to unflattened module (#132817)
Reland https://github.com/pytorch/pytorch/pull/128617

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132817
Approved by: https://github.com/pianpwk
2024-08-08 06:05:30 +00:00
PyTorch MergeBot
3855ac5a5d Revert "[export] Add print_readable to unflattener (#128617)"
This reverts commit ab9791c0e3.

Reverted https://github.com/pytorch/pytorch/pull/128617 on behalf of https://github.com/angelayi due to never got landed internally due to weird flow... sorry ([comment](https://github.com/pytorch/pytorch/pull/128617#issuecomment-2264224466))
2024-08-01 23:47:29 +00:00
Oguz Ulgen
920f0426ae Add None return type to init -- tests rest (#132376)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132376
Approved by: https://github.com/jamesjwu
ghstack dependencies: #132335, #132351, #132352
2024-08-01 15:44:51 +00:00
YangQun1
589aef4bb0 Fix py codegen to delete values that don't have any users (#131028)
Fixes #131025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131028
Approved by: https://github.com/ezyang
2024-08-01 03:18:37 +00:00
angelayi
ab9791c0e3 [export] Add print_readable to unflattener (#128617)
Taking inspiration from `GraphModule.print_readable` (aka I copied its [code](17b45e905a/torch/fx/graph_module.py (L824))), I added a `print_readable` to the unflattened module, because it's kind of nontrivial to print the contents of this module.

Example print from `python test/export/test_unflatten.py -k test_unflatten_nested`
```
class UnflattenedModule(torch.nn.Module):
    def forward(self, x: "f32[2, 3]"):
        # No stacktrace found for following nodes
        rootparam: "f32[2, 3]" = self.rootparam

        # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:99 in forward, code: x = x * self.rootparam
        mul: "f32[2, 3]" = torch.ops.aten.mul.Tensor(x, rootparam);  x = rootparam = None

        # No stacktrace found for following nodes
        foo: "f32[2, 3]" = self.foo(mul);  mul = None
        bar: "f32[2, 3]" = self.bar(foo);  foo = None
        return (bar,)

    class foo(torch.nn.Module):
        def forward(self, mul: "f32[2, 3]"):
            # No stacktrace found for following nodes
            child1param: "f32[2, 3]" = self.child1param
            nested: "f32[2, 3]" = self.nested(mul);  mul = None

            # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:79 in forward, code: return x + self.child1param
            add: "f32[2, 3]" = torch.ops.aten.add.Tensor(nested, child1param);  nested = child1param = None
            return add

        class nested(torch.nn.Module):
            def forward(self, mul: "f32[2, 3]"):
                # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:67 in forward, code: return x / x
                div: "f32[2, 3]" = torch.ops.aten.div.Tensor(mul, mul);  mul = None
                return div

    class bar(torch.nn.Module):
        def forward(self, add: "f32[2, 3]"):
            # No stacktrace found for following nodes
            child2buffer: "f32[2, 3]" = self.child2buffer

            # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:87 in forward, code: return x - self.child2buffer
            sub: "f32[2, 3]" = torch.ops.aten.sub.Tensor(add, child2buffer);  add = child2buffer = None
            return sub
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128617
Approved by: https://github.com/zhxchen17, https://github.com/pianpwk
2024-07-30 00:41:44 +00:00
Xuehai Pan
918ece4f4d [BE][Easy][11/19] enforce style for empty lines in import segments in test/dy*/ (#129762)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129762
Approved by: https://github.com/anijain2305
2024-07-27 17:43:53 +00:00
PyTorch MergeBot
c3679bed35 Revert "Fix py codegen to delete values that don't have any users (#131028)"
This reverts commit 91aba7baac.

Reverted https://github.com/pytorch/pytorch/pull/131028 on behalf of https://github.com/clee2000 due to broke inductor/test_triton_kernels inductor/test_triton_kernels.py::KernelTests::test_triton_kernel_functionalize [GH job link](https://github.com/pytorch/pytorch/actions/runs/10094659640/job/27915271250) [HUD commit link](91aba7baac) ([comment](https://github.com/pytorch/pytorch/pull/131028#issuecomment-2251058374))
2024-07-25 17:42:18 +00:00
YangQun1
91aba7baac Fix py codegen to delete values that don't have any users (#131028)
Fixes #131025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131028
Approved by: https://github.com/ezyang
2024-07-25 13:04:23 +00:00
PyTorch MergeBot
8ffd109a00 Revert "Fix py codegen to delete values that don't have any users (#131028)"
This reverts commit 466c167b71.

Reverted https://github.com/pytorch/pytorch/pull/131028 on behalf of https://github.com/atalman due to breaks CI ([comment](https://github.com/pytorch/pytorch/pull/131028#issuecomment-2247771530))
2024-07-24 12:21:43 +00:00
YangQun1
466c167b71 Fix py codegen to delete values that don't have any users (#131028)
Fixes #131025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131028
Approved by: https://github.com/ezyang
2024-07-24 01:03:56 +00:00
PyTorch MergeBot
d6ae8bbf16 Revert "[export] Add print_readable to unflattener (#128617)"
This reverts commit 9fee87e4cd.

Reverted https://github.com/pytorch/pytorch/pull/128617 on behalf of https://github.com/clee2000 due to broke inductor/test_flex_attention https://github.com/pytorch/pytorch/actions/runs/9984688318/job/27595182606 433ef4e444 Not run on PR due to bad TD ([comment](https://github.com/pytorch/pytorch/pull/128617#issuecomment-2236867975))
2024-07-18 15:31:51 +00:00
angelayi
9fee87e4cd [export] Add print_readable to unflattener (#128617)
Taking inspiration from `GraphModule.print_readable` (aka I copied its [code](17b45e905a/torch/fx/graph_module.py (L824))), I added a `print_readable` to the unflattened module, because it's kind of nontrivial to print the contents of this module.

Example print from `python test/export/test_unflatten.py -k test_unflatten_nested`
```
class UnflattenedModule(torch.nn.Module):
    def forward(self, x: "f32[2, 3]"):
        # No stacktrace found for following nodes
        rootparam: "f32[2, 3]" = self.rootparam

        # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:99 in forward, code: x = x * self.rootparam
        mul: "f32[2, 3]" = torch.ops.aten.mul.Tensor(x, rootparam);  x = rootparam = None

        # No stacktrace found for following nodes
        foo: "f32[2, 3]" = self.foo(mul);  mul = None
        bar: "f32[2, 3]" = self.bar(foo);  foo = None
        return (bar,)

    class foo(torch.nn.Module):
        def forward(self, mul: "f32[2, 3]"):
            # No stacktrace found for following nodes
            child1param: "f32[2, 3]" = self.child1param
            nested: "f32[2, 3]" = self.nested(mul);  mul = None

            # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:79 in forward, code: return x + self.child1param
            add: "f32[2, 3]" = torch.ops.aten.add.Tensor(nested, child1param);  nested = child1param = None
            return add

        class nested(torch.nn.Module):
            def forward(self, mul: "f32[2, 3]"):
                # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:67 in forward, code: return x / x
                div: "f32[2, 3]" = torch.ops.aten.div.Tensor(mul, mul);  mul = None
                return div

    class bar(torch.nn.Module):
        def forward(self, add: "f32[2, 3]"):
            # No stacktrace found for following nodes
            child2buffer: "f32[2, 3]" = self.child2buffer

            # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:87 in forward, code: return x - self.child2buffer
            sub: "f32[2, 3]" = torch.ops.aten.sub.Tensor(add, child2buffer);  add = child2buffer = None
            return sub
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128617
Approved by: https://github.com/zhxchen17, https://github.com/pianpwk
2024-07-18 01:36:01 +00:00
PyTorch MergeBot
dff9d68f18 Revert "Fix names conflict when lifting (#129817)"
This reverts commit 53cf46b8c6.

Reverted https://github.com/pytorch/pytorch/pull/129817 on behalf of https://github.com/clee2000 due to Failing inductor/test_flex_attention.py https://github.com/pytorch/pytorch/actions/runs/9940532858/job/27478084137 74da2a467f Sorry for the churn, possibly a landrace? ([comment](https://github.com/pytorch/pytorch/pull/129817#issuecomment-2229519886))
2024-07-15 22:08:45 +00:00
Zhanghan Wang
53cf46b8c6 Fix names conflict when lifting (#129817)
## Bug description
When pending args that are potentially to be lift [here](58f346c874/torch/_dynamo/output_graph.py (L1866)) having same base name, like `contiguous` and `contiguous_1`, the call into [create_graph_input](58f346c874/torch/_dynamo/output_graph.py (L2081)) can finally create a name ([here](58f346c874/torch/fx/graph.py (L1008))) that overwrite args to lift. And thus causing a wrong output of graph.

## Reproducing
Below is an reproduceable example,
```python
import logging
from typing import List

import torch
from functorch.compile import aot_module_simplified, make_boxed_func

@torch.library.custom_op("mylib::somefunc_forward", mutates_args=())
def somefunc_forward(
    input_: torch.Tensor,
    weight: torch.Tensor,
    shape: List[int],
) -> torch.Tensor:
    return torch.ones_like(input_)

@somefunc_forward.register_fake
def _(input_, shape, weight):
    return torch.empty_like(input_)

@torch.library.custom_op("mylib::somefunc_backward", mutates_args=())
def somefunc_backward(
    grad_output: torch.Tensor,
    input_: torch.Tensor,
    weight: torch.Tensor,
    shape: List[int],
) -> torch.Tensor:
    print(f"backward.{grad_output.shape=}")
    print(f"backward.{input_.shape=}")
    print(f"backward.{weight.shape=}")
    print(f"backward.{shape=}")
    assert list(weight.shape) == shape
    return torch.ones_like(weight)

@somefunc_backward.register_fake
def _(grad_output, input_, weight, shape):
    return torch.empty_like(weight)

def a_func(grad_output, input_, weight_, shape):
    return torch.ones_like(input_.sum() * weight_)

class SomeFunc(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, weight, normalized_shape):
        ctx.normalized_shape = normalized_shape
        input_ = input.contiguous()
        weight_ = weight.contiguous()
        output = somefunc_forward(input_, weight_, ctx.normalized_shape)
        ctx.save_for_backward(input_, weight_)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input_, weight_ = ctx.saved_tensors
        # grad_weight = a_func(grad_output, input_, weight_, ctx.normalized_shape)
        grad_weight = somefunc_backward(
            grad_output.contiguous(),
            input_,
            weight_,
            ctx.normalized_shape,
        )
        return None, grad_weight, None

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.ones(7))

    def forward(self, x):
        return SomeFunc.apply(x, self.weight, [7])

model = MyModel()
torch._logging.set_logs(dynamo=logging.DEBUG, aot=logging.DEBUG, graph_code=True)

def aot_print_backend(gm, sample_inputs):
    # Forward compiler capture
    def fw(gm, sample_inputs):
        print(f"----- fw")
        gm.print_readable()
        return make_boxed_func(gm.forward)

    # Backward compiler capture
    def bw(gm, sample_inputs):
        print(f"----- bw")
        gm.print_readable()
        return make_boxed_func(gm.forward)

    # Call AOTAutograd
    gm_forward = aot_module_simplified(
        gm, sample_inputs, fw_compiler=fw, bw_compiler=bw
    )
    return gm_forward

model = torch.compile(
    model,
    backend=aot_print_backend,
    dynamic=False,
)
out = model(torch.rand((128, 4, 7)))
out.mean().backward()
```

I can see log that showing calling into create_graph_input like
```log
V0629 02:08:46.839914 8200981504 torch/_dynamo/output_graph.py:2042] [0/0] create_graph_input contiguous (none)
V0629 02:08:46.839998 8200981504 torch/_dynamo/output_graph.py:2042] [0/0] create_graph_input contiguous_1 (none)
```

And the backward graph generate will be like
```log
class GraphModule(torch.nn.Module):
    def forward(self, function_ctx, somefunc_forward_default: "f32[128, 4, 7]", contiguous: "f32[128, 4, 7]", contiguous_1: "f32[7]"):
        contiguous_1 = contiguous
        contiguous_2 = contiguous_1

        # No stacktrace found for following nodes
        _set_grad_enabled = torch._C._set_grad_enabled(False)

         # File: /Users/bytedance/testtorch/test_custom_op_bug.py:61 in backward, code: grad_output.contiguous(),
        contiguous: "f32[128, 4, 7]" = somefunc_forward_default.contiguous();  somefunc_forward_default = None

         # File: /opt/tiger/pytorch/torch/_library/custom_ops.py:506 in __call__, code: return self._opoverload(*args, **kwargs)
        somefunc_backward_default: "f32[7]" = torch.ops.mylib.somefunc_backward.default(contiguous, contiguous_1, contiguous_2, [7]);  contiguous = contiguous_1 = contiguous_2 = None

        # No stacktrace found for following nodes
        _set_grad_enabled_1 = torch._C._set_grad_enabled(True)
        return (None, somefunc_backward_default)
```

The original code of `somefunc_backward` takes a input list of `grad_output`, `input_`, `weight` and `shape`, where `weight` should be shape of `torch.Size([7])`. However, in the graph, `contiguous1` and `contiguous_2` are assigned with `contiguous`, this leads to assertion failure I added in `somefunc_backward`.

## Environment
```log
Collecting environment information...
PyTorch version: 2.5.0a0+git0b7e8df
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: macOS 14.5 (arm64)
GCC version: Could not collect
Clang version: 15.0.0 (clang-1500.3.9.4)
CMake version: version 3.26.4
Libc version: N/A

Python version: 3.9.19 (main, May  6 2024, 14:39:30)  [Clang 14.0.6 ] (64-bit runtime)
Python platform: macOS-14.5-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Apple M3 Pro

Versions of relevant libraries:
[pip3] numpy==2.0.0
[pip3] optree==0.11.0
[pip3] torch==2.5.0a0+git0b7e8df
[pip3] torchgraph==0.0.1
[conda] numpy                     2.0.0                    pypi_0    pypi
[conda] optree                    0.11.0                   pypi_0    pypi
[conda] torch                     2.5.0a0+git0b7e8df           dev_0    <develop>
[conda] torchgraph                0.0.1                     dev_0    <develop>
```

## How to fix?

I put a naive fix that add the potential args to lift into the used_names. This visits private variables, will fix that if this issue makes sense to you.

@zou3519 @oulgen

Co-authored-by: rzou <zou3519@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129817
Approved by: https://github.com/zou3519
2024-07-15 18:49:12 +00:00
PyTorch MergeBot
1e897a0ca4 Revert "Fix names conflict when lifting (#129817)"
This reverts commit 74da2a467f.

Reverted https://github.com/pytorch/pytorch/pull/129817 on behalf of https://github.com/clee2000 due to broke dynamo/test_inline_inbuilt_nn_modules.py https://github.com/pytorch/pytorch/actions/runs/9940532858/job/27461141919 74da2a467f.  Test passed on PR, possibly a landrace? ([comment](https://github.com/pytorch/pytorch/pull/129817#issuecomment-2228993570))
2024-07-15 17:09:52 +00:00
Zhanghan Wang
74da2a467f Fix names conflict when lifting (#129817)
## Bug description
When pending args that are potentially to be lift [here](58f346c874/torch/_dynamo/output_graph.py (L1866)) having same base name, like `contiguous` and `contiguous_1`, the call into [create_graph_input](58f346c874/torch/_dynamo/output_graph.py (L2081)) can finally create a name ([here](58f346c874/torch/fx/graph.py (L1008))) that overwrite args to lift. And thus causing a wrong output of graph.

## Reproducing
Below is an reproduceable example,
```python
import logging
from typing import List

import torch
from functorch.compile import aot_module_simplified, make_boxed_func

@torch.library.custom_op("mylib::somefunc_forward", mutates_args=())
def somefunc_forward(
    input_: torch.Tensor,
    weight: torch.Tensor,
    shape: List[int],
) -> torch.Tensor:
    return torch.ones_like(input_)

@somefunc_forward.register_fake
def _(input_, shape, weight):
    return torch.empty_like(input_)

@torch.library.custom_op("mylib::somefunc_backward", mutates_args=())
def somefunc_backward(
    grad_output: torch.Tensor,
    input_: torch.Tensor,
    weight: torch.Tensor,
    shape: List[int],
) -> torch.Tensor:
    print(f"backward.{grad_output.shape=}")
    print(f"backward.{input_.shape=}")
    print(f"backward.{weight.shape=}")
    print(f"backward.{shape=}")
    assert list(weight.shape) == shape
    return torch.ones_like(weight)

@somefunc_backward.register_fake
def _(grad_output, input_, weight, shape):
    return torch.empty_like(weight)

def a_func(grad_output, input_, weight_, shape):
    return torch.ones_like(input_.sum() * weight_)

class SomeFunc(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, weight, normalized_shape):
        ctx.normalized_shape = normalized_shape
        input_ = input.contiguous()
        weight_ = weight.contiguous()
        output = somefunc_forward(input_, weight_, ctx.normalized_shape)
        ctx.save_for_backward(input_, weight_)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input_, weight_ = ctx.saved_tensors
        # grad_weight = a_func(grad_output, input_, weight_, ctx.normalized_shape)
        grad_weight = somefunc_backward(
            grad_output.contiguous(),
            input_,
            weight_,
            ctx.normalized_shape,
        )
        return None, grad_weight, None

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.ones(7))

    def forward(self, x):
        return SomeFunc.apply(x, self.weight, [7])

model = MyModel()
torch._logging.set_logs(dynamo=logging.DEBUG, aot=logging.DEBUG, graph_code=True)

def aot_print_backend(gm, sample_inputs):
    # Forward compiler capture
    def fw(gm, sample_inputs):
        print(f"----- fw")
        gm.print_readable()
        return make_boxed_func(gm.forward)

    # Backward compiler capture
    def bw(gm, sample_inputs):
        print(f"----- bw")
        gm.print_readable()
        return make_boxed_func(gm.forward)

    # Call AOTAutograd
    gm_forward = aot_module_simplified(
        gm, sample_inputs, fw_compiler=fw, bw_compiler=bw
    )
    return gm_forward

model = torch.compile(
    model,
    backend=aot_print_backend,
    dynamic=False,
)
out = model(torch.rand((128, 4, 7)))
out.mean().backward()
```

I can see log that showing calling into create_graph_input like
```log
V0629 02:08:46.839914 8200981504 torch/_dynamo/output_graph.py:2042] [0/0] create_graph_input contiguous (none)
V0629 02:08:46.839998 8200981504 torch/_dynamo/output_graph.py:2042] [0/0] create_graph_input contiguous_1 (none)
```

And the backward graph generate will be like
```log
class GraphModule(torch.nn.Module):
    def forward(self, function_ctx, somefunc_forward_default: "f32[128, 4, 7]", contiguous: "f32[128, 4, 7]", contiguous_1: "f32[7]"):
        contiguous_1 = contiguous
        contiguous_2 = contiguous_1

        # No stacktrace found for following nodes
        _set_grad_enabled = torch._C._set_grad_enabled(False)

         # File: /Users/bytedance/testtorch/test_custom_op_bug.py:61 in backward, code: grad_output.contiguous(),
        contiguous: "f32[128, 4, 7]" = somefunc_forward_default.contiguous();  somefunc_forward_default = None

         # File: /opt/tiger/pytorch/torch/_library/custom_ops.py:506 in __call__, code: return self._opoverload(*args, **kwargs)
        somefunc_backward_default: "f32[7]" = torch.ops.mylib.somefunc_backward.default(contiguous, contiguous_1, contiguous_2, [7]);  contiguous = contiguous_1 = contiguous_2 = None

        # No stacktrace found for following nodes
        _set_grad_enabled_1 = torch._C._set_grad_enabled(True)
        return (None, somefunc_backward_default)
```

The original code of `somefunc_backward` takes a input list of `grad_output`, `input_`, `weight` and `shape`, where `weight` should be shape of `torch.Size([7])`. However, in the graph, `contiguous1` and `contiguous_2` are assigned with `contiguous`, this leads to assertion failure I added in `somefunc_backward`.

## Environment
```log
Collecting environment information...
PyTorch version: 2.5.0a0+git0b7e8df
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: macOS 14.5 (arm64)
GCC version: Could not collect
Clang version: 15.0.0 (clang-1500.3.9.4)
CMake version: version 3.26.4
Libc version: N/A

Python version: 3.9.19 (main, May  6 2024, 14:39:30)  [Clang 14.0.6 ] (64-bit runtime)
Python platform: macOS-14.5-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Apple M3 Pro

Versions of relevant libraries:
[pip3] numpy==2.0.0
[pip3] optree==0.11.0
[pip3] torch==2.5.0a0+git0b7e8df
[pip3] torchgraph==0.0.1
[conda] numpy                     2.0.0                    pypi_0    pypi
[conda] optree                    0.11.0                   pypi_0    pypi
[conda] torch                     2.5.0a0+git0b7e8df           dev_0    <develop>
[conda] torchgraph                0.0.1                     dev_0    <develop>
```

## How to fix?

I put a naive fix that add the potential args to lift into the used_names. This visits private variables, will fix that if this issue makes sense to you.

@zou3519 @oulgen

Co-authored-by: rzou <zou3519@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129817
Approved by: https://github.com/zou3519
2024-07-15 13:41:46 +00:00
rzou
f2c9f0c0db [HOP] improve naming for subgraph inputs (#130255)
Previously, subgraph input names were whatever the input proxies were,
which were confusing. This PR changes those names to be
whatever the names of the arguments the functions being
speculate_subgraph'ed are. This is best-effort: if we can't figure it
out then we go back to the previous strategy.

Test Plan:
- existing expecttests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130255
Approved by: https://github.com/ydwu4
2024-07-09 02:46:40 +00:00
PyTorch MergeBot
5efe71f134 Revert "[export] Add print_readable to unflattener (#128617)"
This reverts commit 5d9a609b4f.

Reverted https://github.com/pytorch/pytorch/pull/128617 on behalf of https://github.com/huydhn due to Sorry for reverting your change but another failed test shows up in trunk inductor/test_flex_attention.py where it needs to be updated 5d9a609b4f.  I guess it is easier to revert and reland this ([comment](https://github.com/pytorch/pytorch/pull/128617#issuecomment-2169030779))
2024-06-15 01:46:23 +00:00
angelayi
5d9a609b4f [export] Add print_readable to unflattener (#128617)
Taking inspiration from `GraphModule.print_readable` (aka I copied its [code](17b45e905a/torch/fx/graph_module.py (L824))), I added a `print_readable` to the unflattened module, because it's kind of nontrivial to print the contents of this module.

Example print from `python test/export/test_unflatten.py -k test_unflatten_nested`
```
class UnflattenedModule(torch.nn.Module):
    def forward(self, x: "f32[2, 3]"):
        # No stacktrace found for following nodes
        rootparam: "f32[2, 3]" = self.rootparam

        # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:99 in forward, code: x = x * self.rootparam
        mul: "f32[2, 3]" = torch.ops.aten.mul.Tensor(x, rootparam);  x = rootparam = None

        # No stacktrace found for following nodes
        foo: "f32[2, 3]" = self.foo(mul);  mul = None
        bar: "f32[2, 3]" = self.bar(foo);  foo = None
        return (bar,)

    class foo(torch.nn.Module):
        def forward(self, mul: "f32[2, 3]"):
            # No stacktrace found for following nodes
            child1param: "f32[2, 3]" = self.child1param
            nested: "f32[2, 3]" = self.nested(mul);  mul = None

            # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:79 in forward, code: return x + self.child1param
            add: "f32[2, 3]" = torch.ops.aten.add.Tensor(nested, child1param);  nested = child1param = None
            return add

        class nested(torch.nn.Module):
            def forward(self, mul: "f32[2, 3]"):
                # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:67 in forward, code: return x / x
                div: "f32[2, 3]" = torch.ops.aten.div.Tensor(mul, mul);  mul = None
                return div

    class bar(torch.nn.Module):
        def forward(self, add: "f32[2, 3]"):
            # No stacktrace found for following nodes
            child2buffer: "f32[2, 3]" = self.child2buffer

            # File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:87 in forward, code: return x - self.child2buffer
            sub: "f32[2, 3]" = torch.ops.aten.sub.Tensor(add, child2buffer);  add = child2buffer = None
            return sub
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128617
Approved by: https://github.com/zhxchen17, https://github.com/pianpwk
2024-06-15 00:26:04 +00:00
Prachi Gupta
e2610240f9 [ROCm] Enable several inductor UTs (#127761)
Fixes #ISSUE_NUMBER

Needs https://github.com/pytorch/pytorch/pull/125396

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127761
Approved by: https://github.com/peterbell10, https://github.com/pruthvistony
2024-06-12 22:47:45 +00:00
Xuehai Pan
26f4f10ac8 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
2024-05-27 14:49:57 +00:00
PyTorch MergeBot
55c0ab2887 Revert "[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)"
This reverts commit 7763c83af6.

Reverted https://github.com/pytorch/pytorch/pull/127126 on behalf of https://github.com/XuehaiPan due to Broken CI ([comment](https://github.com/pytorch/pytorch/pull/127126#issuecomment-2133044286))
2024-05-27 09:22:08 +00:00
Xuehai Pan
7763c83af6 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
2024-05-27 04:22:18 +00:00
Yu, Guangye
e7a42702f9 generalize custom_fwd&custom_bwd to be device-agnostic (#126531)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126531
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/albanD, https://github.com/EikanWang
ghstack dependencies: #126527
2024-05-25 06:48:16 +00:00
Edward Z. Yang
ecd62746e3 Also pull size/stride info from example_value (#125505)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125505
Approved by: https://github.com/jansel
2024-05-05 22:27:46 +00:00
Yanbo Liang
ce503c1b40 Dynamo x autograd.Function supports setup_context (#124802)
Fixes part of #118397

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124802
Approved by: https://github.com/zou3519
2024-04-27 04:57:13 +00:00
Yanbo Liang
72a34eeb99 Dynamo x autograd.Function supports non-{Tensor, symnode, constant} inputs (#124360)
Fixes #118395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124360
Approved by: https://github.com/zou3519
2024-04-22 23:32:54 +00:00
Xuehai Pan
93e249969b [BE] enable ruff rule RSE and remove useless parentheses in raise statements (#124261)
Remove useless parentheses in `raise` statements if the exception type is raised with no argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124261
Approved by: https://github.com/albanD
2024-04-17 19:29:34 +00:00
Jason Ansel
8069469081 [dynamo] Support Tuple[int] args to autograd.Function (#123887)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123887
Approved by: https://github.com/anijain2305
ghstack dependencies: #123700, #123705, #123786, #123790, #123803, #123804, #123896
2024-04-12 19:03:13 +00:00
Jason Ansel
5a7fd20aa1 [dynamo] Support autograd.FunctionCtx.needs_input_grad (#123700)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123700
Approved by: https://github.com/anijain2305
2024-04-11 19:30:55 +00:00
William Wen
5c7e2fd270 [dynamo, 3.12] use pymalloc allocator instead of malloc/free for frames (#123299)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123299
Approved by: https://github.com/jansel
ghstack dependencies: #123216
2024-04-04 20:00:54 +00:00
William Wen
d59c5d7353 [dynamo, 3.12] enable dynamo on 3.12, enable most dynamo unittests on 3.12 (#123216)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123216
Approved by: https://github.com/jansel, https://github.com/malfet
2024-04-04 20:00:54 +00:00