Revert "Fix py codegen to delete values that don't have any users (#131028)"

This reverts commit 466c167b71.

Reverted https://github.com/pytorch/pytorch/pull/131028 on behalf of https://github.com/atalman due to breaks CI ([comment](https://github.com/pytorch/pytorch/pull/131028#issuecomment-2247771530))
This commit is contained in:
PyTorch MergeBot 2024-07-24 12:21:43 +00:00
parent 451462dbff
commit 8ffd109a00
19 changed files with 671 additions and 703 deletions

View File

@ -519,7 +519,7 @@ class GraphModule(torch.nn.Module):
l_weird_b = L_weird_b
l_weird_c = L_weird_c
function_ctx = torch.autograd.function.FunctionCtx(); function_ctx = None
function_ctx = torch.autograd.function.FunctionCtx()
fwd_body_0 = self.fwd_body_0
bwd_body_0 = self.bwd_body_0
autograd_function_apply: "f32[]" = torch._functorch.autograd_function.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_z_, l_weird_b, l_weird_c, args_tensor_mask = [True, False, True]); fwd_body_0 = bwd_body_0 = l_x_ = l_z_ = l_weird_b = l_weird_c = None
@ -534,13 +534,13 @@ class GraphModule(torch.nn.Module):
class GraphModule(torch.nn.Module):
def forward(self, ctx, grad: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(False)
mul: "f32[]" = grad * l_weird_b; l_weird_b = None
mul_1: "f32[]" = mul * l_weird_c; mul = l_weird_c = None
mul_2: "f32[]" = grad * 2; grad = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True)
return (mul_1, mul_2)
""",
)

View File

@ -95,7 +95,7 @@ s0""",
"""\
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
y = l_x_ * 2; l_x_ = y = None""",
y = l_x_ * 2; l_x_ = None""",
)
def test_print_disas(self):
@ -391,7 +391,7 @@ y = TensorVariable()
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
y = l_x_ * 2; l_x_ = None
add = y + 4; y = add = None""",
add = y + 4; y = None""",
)

View File

@ -1057,7 +1057,7 @@ class CtxManagerTests(torch._dynamo.test_case.TestCase):
"""\
class GraphModule(torch.nn.Module):
def forward(self):
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported'); _saved_tensors_hooks_disable = None
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
x: "f32[1]" = torch.ones(1)
@ -1065,9 +1065,9 @@ class GraphModule(torch.nn.Module):
add: "f32[1]" = x + y; x = y = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable(); _saved_tensors_hooks_enable = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable()
return (add,)
""", # NOQA: B950
""",
)
def test_disable_saved_tensors_hooks_prev_disabled(self):
@ -1097,7 +1097,7 @@ class GraphModule(torch.nn.Module):
"""\
class GraphModule(torch.nn.Module):
def forward(self):
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported'); _saved_tensors_hooks_disable = None
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
x: "f32[1]" = torch.ones(1)
@ -1105,9 +1105,9 @@ class GraphModule(torch.nn.Module):
add: "f32[1]" = x + y; x = y = None
_saved_tensors_hooks_disable_1 = torch._C._autograd._saved_tensors_hooks_disable('Previously disabled message'); _saved_tensors_hooks_disable_1 = None
_saved_tensors_hooks_disable_1 = torch._C._autograd._saved_tensors_hooks_disable('Previously disabled message')
return (add,)
""", # NOQA: B950
""",
)
def test_disable_saved_tensors_hooks_prev_disabled_nested(self):
@ -1143,23 +1143,23 @@ class GraphModule(torch.nn.Module):
"""\
class GraphModule(torch.nn.Module):
def forward(self):
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported'); _saved_tensors_hooks_disable = None
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
x: "f32[1]" = torch.ones(1)
y: "f32[1]" = torch.zeros(1)
_saved_tensors_hooks_disable_1 = torch._C._autograd._saved_tensors_hooks_disable('This is not supported inner'); _saved_tensors_hooks_disable_1 = None
_saved_tensors_hooks_disable_1 = torch._C._autograd._saved_tensors_hooks_disable('This is not supported inner')
add: "f32[1]" = x + y; y = None
_saved_tensors_hooks_disable_2 = torch._C._autograd._saved_tensors_hooks_disable('This is not supported'); _saved_tensors_hooks_disable_2 = None
_saved_tensors_hooks_disable_2 = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
add_1: "f32[1]" = add + x; add = x = None
_saved_tensors_hooks_disable_3 = torch._C._autograd._saved_tensors_hooks_disable('Previously disabled message'); _saved_tensors_hooks_disable_3 = None
_saved_tensors_hooks_disable_3 = torch._C._autograd._saved_tensors_hooks_disable('Previously disabled message')
return (add_1,)
""", # NOQA: B950
""",
)
def test_disable_saved_tensors_hooks_graph_break(self):
@ -1186,13 +1186,13 @@ class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[]"):
l_x_ = L_x_
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported'); _saved_tensors_hooks_disable = None
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
y: "f32[]" = l_x_ + 1; l_x_ = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable(); _saved_tensors_hooks_enable = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable()
return (y,)
""", # NOQA: B950
""",
)
graph = eager.graphs[1]
@ -1204,13 +1204,13 @@ class GraphModule(torch.nn.Module):
def forward(self, L_y_: "f32[]"):
l_y_ = L_y_
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported'); _saved_tensors_hooks_disable = None
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
mul: "f32[]" = l_y_ * 2; l_y_ = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable(); _saved_tensors_hooks_enable = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable()
return (mul,)
""", # NOQA: B950
""",
)
def test_context_wrapping_grad_mode_decorator(self):

View File

@ -4504,8 +4504,8 @@ def forward(self, x):
l_args_0_ = arg0
_enter_inference_mode = torch.autograd.grad_mode._enter_inference_mode(True)
add = l_args_0_ + 1; l_args_0_ = None
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = _exit_inference_mode = None
return pytree.tree_unflatten([add], self._out_spec)""", # NOQA: B950
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = None
return pytree.tree_unflatten([add], self._out_spec)""",
)
self.assertEqual(out.requires_grad, False)
with self.assertRaisesRegex(
@ -4527,8 +4527,8 @@ def forward(self, x):
l_args_0_ = arg0
_enter_inference_mode = torch.autograd.grad_mode._enter_inference_mode(False)
add = l_args_0_ + 1; l_args_0_ = None
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = _exit_inference_mode = None
return pytree.tree_unflatten([add], self._out_spec)""", # NOQA: B950
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = None
return pytree.tree_unflatten([add], self._out_spec)""",
)
inp = torch.randn(2, 2)
@ -4549,8 +4549,8 @@ def forward(self, x):
l_x_ = arg0
_enter_inference_mode = torch.autograd.grad_mode._enter_inference_mode(True)
add = l_x_ + 1; l_x_ = None
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = _exit_inference_mode = None
return pytree.tree_unflatten([add], self._out_spec)""", # NOQA: B950
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = None
return pytree.tree_unflatten([add], self._out_spec)""",
)
inp = torch.randn(2, 2, requires_grad=True)
out = gm(inp)
@ -4583,10 +4583,10 @@ def forward(self, x, b, y):
l_x_ = arg0
l_b_ = arg1
l_y_ = arg2
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(False)
x = l_x_.clone(); l_x_ = None
x[l_b_] = l_y_; setitem = x; l_b_ = l_y_ = setitem = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
x[l_b_] = l_y_; setitem = x; l_b_ = l_y_ = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True)
return pytree.tree_unflatten([x], self._out_spec)""",
)
@ -4601,9 +4601,9 @@ def forward(self, x, b, y):
l_y_ = arg2
_enter_inference_mode = torch.autograd.grad_mode._enter_inference_mode(True)
x = l_x_.clone(); l_x_ = None
x[l_b_] = l_y_; setitem = x; l_b_ = l_y_ = setitem = None
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = _exit_inference_mode = None
return pytree.tree_unflatten([x], self._out_spec)""", # NOQA: B950
x[l_b_] = l_y_; setitem = x; l_b_ = l_y_ = None
_exit_inference_mode = torch.autograd.grad_mode._exit_inference_mode(_enter_inference_mode); _enter_inference_mode = None
return pytree.tree_unflatten([x], self._out_spec)""",
)
with self.assertRaisesRegex(

File diff suppressed because it is too large Load Diff

View File

@ -320,13 +320,13 @@ class GraphModule(torch.nn.Module):
detach: "f32[2, 2]" = l_y_.detach()
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(False)
set_: "f32[2, 2]" = torch_Tensor_set_(l_x_, detach); detach = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True)
_lower_version_count_by_1 = torch__dynamo_variables_builtin__lower_version_count_by_1(set_); set_ = _lower_version_count_by_1 = None
_lower_version_count_by_1 = torch__dynamo_variables_builtin__lower_version_count_by_1(set_); set_ = None
mul: "f32[2, 2]" = l_x_ * l_y_; l_x_ = l_y_ = None
return (mul,)

View File

@ -765,7 +765,7 @@ class MiscTests(torch._inductor.test_case.TestCase):
"""\
def forward(self, arg0_1: "f32[3][1]cpu", arg1_1: "f32[3][1]cpu", arg2_1: "f32[3][1]cpu", arg3_1: "f32[3][1]cpu", arg4_1: "f32[3][1]cpu"):
# No stacktrace found for following nodes
foo_default = torch.ops.mylib.foo.default(arg4_1, [arg2_1, arg3_1], arg1_1, 2, arg0_1); arg4_1 = arg2_1 = arg3_1 = arg1_1 = arg0_1 = foo_default = None
foo_default = torch.ops.mylib.foo.default(arg4_1, [arg2_1, arg3_1], arg1_1, 2, arg0_1); arg4_1 = arg2_1 = arg3_1 = arg1_1 = arg0_1 = None
return ()""",
)
@ -916,7 +916,7 @@ def forward(self, arg0_1: "f32[3][1]cpu", arg1_1: "f32[3][1]cpu", arg2_1: "f32[3
"""\
def forward(self, arg0_1: "f32[3][1]cpu", arg1_1: "f32[3][1]cpu", arg2_1: "f32[3][1]cpu", arg3_1: "f32[3][1]cpu"):
# No stacktrace found for following nodes
foo_default = torch.ops.mylib.foo.default(None, [arg2_1, arg3_1], arg1_1, 2, arg0_1); arg2_1 = arg3_1 = arg1_1 = arg0_1 = foo_default = None
foo_default = torch.ops.mylib.foo.default(None, [arg2_1, arg3_1], arg1_1, 2, arg0_1); arg2_1 = arg3_1 = arg1_1 = arg0_1 = None
return ()""",
)

View File

@ -4665,7 +4665,7 @@ def forward(self, s0 : torch.SymInt, s1 : torch.SymInt, L_x_ : torch.Tensor):
getitem_2 = l_x_[0]
sum_1 = getitem_2.sum(); getitem_2 = None
gt_1 = sum_1 > 0; sum_1 = None
_assert_async = torch._assert_async(gt_1, 'assertion error'); gt_1 = _assert_async = None
_assert_async = torch._assert_async(gt_1, 'assertion error'); gt_1 = None
cos = l_x_.cos(); l_x_ = None
return (cos,)""",
)

View File

@ -3131,9 +3131,9 @@ def forward(self, x):
getitem = _native_batch_norm_legit_functional[0]
getitem_3 = _native_batch_norm_legit_functional[3]
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
copy__default = torch.ops.aten.copy_.default(bn_running_mean, getitem_3); bn_running_mean = getitem_3 = copy__default = None
copy__default_1 = torch.ops.aten.copy_.default(bn_running_var, getitem_4); bn_running_var = getitem_4 = copy__default_1 = None
copy__default_2 = torch.ops.aten.copy_.default(bn_num_batches_tracked, add); bn_num_batches_tracked = add = copy__default_2 = None
copy__default = torch.ops.aten.copy_.default(bn_running_mean, getitem_3); bn_running_mean = getitem_3 = None
copy__default_1 = torch.ops.aten.copy_.default(bn_running_var, getitem_4); bn_running_var = getitem_4 = None
copy__default_2 = torch.ops.aten.copy_.default(bn_num_batches_tracked, add); bn_num_batches_tracked = add = None
return pytree.tree_unflatten((getitem,), self._out_spec)""",
)
@ -5706,15 +5706,15 @@ def forward(self, x):
"""\
def forward(self, x):
item = torch.ops.aten.item.default(x); x = None
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(item); sym_constrain_range_for_size_default = None
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(item)
ge = item >= 3
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge, "Runtime assertion failed for expression u1 >= 3 on node 'ge'"); ge = _assert_scalar_default = None
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge, "Runtime assertion failed for expression u1 >= 3 on node 'ge'"); ge = None
le = item <= 5
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le, "Runtime assertion failed for expression u1 <= 5 on node 'le'"); le = _assert_scalar_default_1 = None
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le, "Runtime assertion failed for expression u1 <= 5 on node 'le'"); le = None
gt = item > 2
_assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(gt, "Runtime assertion failed for expression 2 < u1 on node 'gt'"); gt = _assert_scalar_default_2 = None
_assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(gt, "Runtime assertion failed for expression 2 < u1 on node 'gt'"); gt = None
lt = item < 6
_assert_scalar_default_3 = torch.ops.aten._assert_scalar.default(lt, "Runtime assertion failed for expression u1 < 6 on node 'lt'"); lt = _assert_scalar_default_3 = None
_assert_scalar_default_3 = torch.ops.aten._assert_scalar.default(lt, "Runtime assertion failed for expression u1 < 6 on node 'lt'"); lt = None
foo_unbacked = torch.ops.testlib.foo_unbacked.default(item); item = None
return foo_unbacked""",
)
@ -5726,11 +5726,11 @@ def forward(self, x, y):
sin = torch.ops.aten.sin.default(y)
sum_1 = torch.ops.aten.sum.dim_IntList(sin, []); sin = None
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x); x = None
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense); sym_constrain_range_for_size_default = None
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense)
ge_1 = _local_scalar_dense >= 3
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u3 >= 3 on node 'ge_1'"); ge_1 = _assert_scalar_default = None
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u3 >= 3 on node 'ge_1'"); ge_1 = None
le_1 = _local_scalar_dense <= 5; _local_scalar_dense = None
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le_1, "Runtime assertion failed for expression u3 <= 5 on node 'le_1'"); le_1 = _assert_scalar_default_1 = None
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le_1, "Runtime assertion failed for expression u3 <= 5 on node 'le_1'"); le_1 = None
full = torch.ops.aten.full.default([4, 4], 1, dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(y, sum_1); y = sum_1 = None
sum_2 = torch.ops.aten.sum.dim_IntList(full, []); full = None

View File

@ -812,7 +812,7 @@ def forward(self, x1, x2):
new_gm.submod_1.code.strip("\n"),
"""\
def forward(self, x1, x2):
_set_grad_enabled = torch._C._set_grad_enabled(True); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(True)
add = torch.ops.aten.add.Tensor(x1, 1); x1 = None
add_1 = torch.ops.aten.add.Tensor(x2, 1); x2 = None
return (add, add_1)
@ -822,7 +822,7 @@ def forward(self, x1, x2):
new_gm.submod_2.code.strip("\n"),
"""\
def forward(self, add, add_1):
_set_grad_enabled_1 = torch._C._set_grad_enabled(False); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False)
sin = torch.ops.aten.sin.default(add); add = None
cos = torch.ops.aten.cos.default(add_1); add_1 = None
return (sin, cos)
@ -832,7 +832,7 @@ def forward(self, add, add_1):
new_gm.submod_3.code.strip("\n"),
"""\
def forward(self, sin, cos):
_set_grad_enabled_2 = torch._C._set_grad_enabled(True); _set_grad_enabled_2 = None
_set_grad_enabled_2 = torch._C._set_grad_enabled(True)
add_2 = torch.ops.aten.add.Tensor(sin, 1); sin = None
add_3 = torch.ops.aten.add.Tensor(cos, 1); cos = None
return (add_2, add_3)

View File

@ -641,8 +641,8 @@ def forward(self, primals_1):
def forward(self, primals_1, primals_2):
mul = torch.ops.aten.mul.Tensor(primals_2, 2)
add = torch.ops.aten.add.Tensor(mul, mul)
set_ = torch.ops.aten.set_.source_Tensor(primals_1, mul); primals_1 = set_ = None
copy_ = torch.ops.aten.copy_.default(primals_2, mul); primals_2 = mul = copy_ = None
set_ = torch.ops.aten.set_.source_Tensor(primals_1, mul); primals_1 = None
copy_ = torch.ops.aten.copy_.default(primals_2, mul); primals_2 = mul = None
return [add]""",
)
@ -766,11 +766,11 @@ def forward(self, primals_1):
view = torch.ops.aten.view.default(arange, [3, 3]); arange = None
arange_1 = torch.ops.aten.arange.default(9, dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
view_1 = torch.ops.aten.view.default(arange_1, [3, 3]); arange_1 = None
set_ = torch.ops.fsdp.set_.default(primals_1, view); view = set_ = None
set_ = torch.ops.fsdp.set_.default(primals_1, view); view = None
mul = torch.ops.aten.mul.Tensor(primals_1, primals_1)
set__1 = torch.ops.fsdp.set_.default(primals_1, view_1); set__1 = None
set__1 = torch.ops.fsdp.set_.default(primals_1, view_1)
mul_1 = torch.ops.aten.mul.Tensor(primals_1, primals_1)
set__2 = torch.ops.fsdp.set_.default(primals_1, view_1); view_1 = set__2 = None
set__2 = torch.ops.fsdp.set_.default(primals_1, view_1); view_1 = None
mul_2 = torch.ops.aten.mul.Tensor(primals_1, primals_1)
add = torch.ops.aten.add.Tensor(mul, mul_1); mul = mul_1 = None
add_1 = torch.ops.aten.add.Tensor(add, mul_2); add = mul_2 = None
@ -1166,11 +1166,11 @@ def forward(self, arg0_1, arg1_1):
fw_graph_cell[0].code.strip(),
"""\
def forward(self, primals_1):
resize_storage_bytes_ = torch.ops.inductor.resize_storage_bytes_.default(primals_1, 32); resize_storage_bytes_ = None
resize_storage_bytes_ = torch.ops.inductor.resize_storage_bytes_.default(primals_1, 32)
ones = torch.ops.aten.ones.default([8], device = device(type='cpu'), pin_memory = False)
copy = torch.ops.aten.copy.default(primals_1, ones); ones = None
add = torch.ops.aten.add.Tensor(copy, 1)
copy_ = torch.ops.aten.copy_.default(primals_1, copy); primals_1 = copy = copy_ = None
copy_ = torch.ops.aten.copy_.default(primals_1, copy); primals_1 = copy = None
return [add]""",
)
@ -1203,7 +1203,7 @@ def forward(self, primals_1):
"""\
def forward(self, primals_1):
sin = torch.ops.aten.sin.default(primals_1)
resize_storage_bytes_ = torch.ops.inductor.resize_storage_bytes_.default(primals_1, 0); resize_storage_bytes_ = None
resize_storage_bytes_ = torch.ops.inductor.resize_storage_bytes_.default(primals_1, 0)
return [sin, primals_1]""",
)
@ -1303,8 +1303,8 @@ def forward(self, primals_1):
def forward(self, primals_1, primals_2):
cat = torch.ops.aten.cat.default([primals_2, primals_2]); primals_2 = None
sin = torch.ops.aten.sin.default(cat)
resize_storage_bytes_ = torch.ops.inductor.resize_storage_bytes_.default(cat, 0); resize_storage_bytes_ = None
set_ = torch.ops.aten.set_.source_Tensor(primals_1, cat); primals_1 = set_ = None
resize_storage_bytes_ = torch.ops.inductor.resize_storage_bytes_.default(cat, 0)
set_ = torch.ops.aten.set_.source_Tensor(primals_1, cat); primals_1 = None
return [sin, cat]""",
)
@ -1400,7 +1400,7 @@ def forward(self, primals_1):
mul = torch.ops.aten.mul.Tensor(view, 2); view = None
view_1 = torch.ops.aten.view.default(mul, [4]); mul = None
add = torch.ops.aten.add.Tensor(view_1, 1)
copy_ = torch.ops.aten.copy_.default(primals_1, view_1); primals_1 = view_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(primals_1, view_1); primals_1 = view_1 = None
return [add]""",
)
@ -1422,7 +1422,7 @@ def forward(self, primals_1):
def forward(self, primals_1):
mul = torch.ops.aten.mul.Tensor(primals_1, 2)
add = torch.ops.aten.add.Tensor(mul, 3)
copy_ = torch.ops.aten.copy_.default(primals_1, mul); primals_1 = mul = copy_ = None
copy_ = torch.ops.aten.copy_.default(primals_1, mul); primals_1 = mul = None
return [add]""",
)
@ -1444,7 +1444,7 @@ def forward(self, primals_1):
def forward(self, arg0_1):
mul = torch.ops.aten.mul.Tensor(arg0_1, 2)
add = torch.ops.aten.add.Tensor(mul, 3)
copy_ = torch.ops.aten.copy_.default(arg0_1, mul); arg0_1 = mul = copy_ = None
copy_ = torch.ops.aten.copy_.default(arg0_1, mul); arg0_1 = mul = None
return (add,)""",
)
@ -3609,7 +3609,7 @@ def forward(self, primals_1, primals_2, primals_3, primals_4):
sum_1 = torch.ops.aten.sum.default(mul_1); mul_1 = None
sum_2 = torch.ops.aten.sum.default(add)
add_1 = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None
copy_ = torch.ops.aten.copy_.default(primals_3, add); primals_3 = add = copy_ = None
copy_ = torch.ops.aten.copy_.default(primals_3, add); primals_3 = add = None
return [add_1, primals_1, primals_2, primals_4, mul]""",
)
@ -3664,7 +3664,7 @@ def forward(self, primals_1, primals_2, primals_3):
sum_1 = torch.ops.aten.sum.default(mm); mm = None
sum_2 = torch.ops.aten.sum.default(add)
add_1 = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None
copy_ = torch.ops.aten.copy_.default(primals_2, add); primals_2 = add = copy_ = None
copy_ = torch.ops.aten.copy_.default(primals_2, add); primals_2 = add = None
return [add_1, primals_1, primals_3]""",
)
self.assertEqual(out_ref, out_test)
@ -3720,9 +3720,9 @@ def forward(self, primals_1, primals_2, primals_3, primals_4, primals_5, primals
getitem_2 = _native_batch_norm_legit_functional[2]
getitem_3 = _native_batch_norm_legit_functional[3]
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
copy_ = torch.ops.aten.copy_.default(primals_3, getitem_3); primals_3 = copy_ = None
copy__1 = torch.ops.aten.copy_.default(primals_4, getitem_4); primals_4 = copy__1 = None
copy__2 = torch.ops.aten.copy_.default(primals_5, add); primals_5 = add = copy__2 = None
copy_ = torch.ops.aten.copy_.default(primals_3, getitem_3); primals_3 = None
copy__1 = torch.ops.aten.copy_.default(primals_4, getitem_4); primals_4 = None
copy__2 = torch.ops.aten.copy_.default(primals_5, add); primals_5 = add = None
return [getitem, primals_1, primals_6, getitem_1, getitem_2, getitem_3, getitem_4]""", # noqa: B950
)
@ -4076,9 +4076,9 @@ def forward(self, arg0_1, arg1_1):
"""\
def forward(self, arg0_1, arg1_1):
add = torch.ops.aten.add.Tensor(arg1_1, 2)
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(False)
add_1 = torch.ops.aten.add.Tensor(add, 2); add = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False)
mul = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None
add_2 = torch.ops.aten.add.Tensor(mul, add_1); mul = add_1 = None
return (add_2,)""",
@ -4100,9 +4100,9 @@ def forward(self, arg0_1, arg1_1):
str(gm.code).strip(),
"""\
def forward(self, arg0_1, arg1_1):
_set_grad_enabled = torch._C._set_grad_enabled(True); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(True)
matmul = torch.ops.aten.matmul.default(arg1_1, arg1_1)
_set_grad_enabled_1 = torch._C._set_grad_enabled(False); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False)
add = torch.ops.aten.add.Tensor(matmul, 2); matmul = None
sum_1 = torch.ops.aten.sum.default(arg1_1); arg1_1 = None
sum_2 = torch.ops.aten.sum.default(add); add = None
@ -4171,9 +4171,9 @@ def forward(self, arg0_1, arg1_1, arg2_1):
str(gm.code).strip(),
"""\
def forward(self, arg0_1, arg1_1):
_set_grad_enabled = torch._C._set_grad_enabled(True); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(True)
mm = torch.ops.aten.mm.default(arg1_1, arg1_1)
_set_grad_enabled_1 = torch._C._set_grad_enabled(False); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False)
add = torch.ops.aten.add.Tensor(mm, 2); mm = None
sum_1 = torch.ops.aten.sum.default(arg1_1); arg1_1 = None
sum_2 = torch.ops.aten.sum.default(add); add = None
@ -4257,14 +4257,14 @@ def forward(self, arg0_1, arg1_1):
str(gm.code).strip(),
"""\
def forward(self, arg0_1, arg1_1):
_set_grad_enabled = torch._C._set_grad_enabled(True); _set_grad_enabled = None
_set_grad_enabled = torch._C._set_grad_enabled(True)
add = torch.ops.aten.add.Tensor(arg1_1, 5)
add_1 = torch.ops.aten.add.Tensor(add, 5); add = None
add_2 = torch.ops.aten.add.Tensor(add_1, 7); add_1 = None
cos = torch.ops.aten.cos.default(arg1_1); arg1_1 = None
sin = torch.ops.aten.sin.default(add_2); add_2 = None
add_3 = torch.ops.aten.add.Tensor(cos, sin); cos = sin = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False); _set_grad_enabled_1 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(False)
return (add_3,)""",
)
@ -4410,13 +4410,13 @@ def forward(self, arg0_1, arg1_1):
"""\
def forward(self, arg0_1, arg1_1):
cos = torch.ops.aten.cos.default(arg0_1); arg0_1 = None
select = torch.ops.aten.select.int(cos, 0, 0); select = None
select = torch.ops.aten.select.int(cos, 0, 0)
body_graph_0 = self.body_graph_0
map_impl = torch.ops.higher_order.map_impl(body_graph_0, [cos], [arg1_1]); body_graph_0 = None
getitem = map_impl[0]; map_impl = None
sum_1 = torch.ops.aten.sum.default(getitem); getitem = None
add = torch.ops.aten.add.Tensor(cos, sum_1); sum_1 = None
select_1 = torch.ops.aten.select.int(cos, 0, 0); select_1 = None
select_1 = torch.ops.aten.select.int(cos, 0, 0)
body_graph_1 = self.body_graph_1
map_impl_1 = torch.ops.higher_order.map_impl(body_graph_1, [cos], [arg1_1]); body_graph_1 = cos = arg1_1 = None
getitem_1 = map_impl_1[0]; map_impl_1 = None
@ -4633,7 +4633,7 @@ class <lambda>(torch.nn.Module):
getitem_3: "f32[3]" = _native_batch_norm_legit_functional[3]
getitem_4: "f32[3]" = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
relu: "f32[1, 3, 3, 3]" = torch.ops.aten.relu.default(getitem); getitem = None
detach: "f32[1, 3, 3, 3]" = torch.ops.aten.detach.default(relu); detach = None
detach: "f32[1, 3, 3, 3]" = torch.ops.aten.detach.default(relu)
detach_1: "f32[1, 3, 3, 3]" = torch.ops.aten.detach.default(relu)
detach_2: "f32[1, 3, 3, 3]" = torch.ops.aten.detach.default(detach_1); detach_1 = None
detach_3: "f32[1, 3, 3, 3]" = torch.ops.aten.detach.default(detach_2); detach_2 = None
@ -4657,7 +4657,7 @@ class <lambda>(torch.nn.Module):
getitem_6: "f32[3]" = native_batch_norm_backward[1]
getitem_7: "f32[3]" = native_batch_norm_backward[2]; native_batch_norm_backward = None
convolution_backward = torch.ops.aten.convolution_backward.default(getitem_5, arg7_1, arg0_1, [3], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [False, True, True]); getitem_5 = arg7_1 = arg0_1 = None
getitem_8 = convolution_backward[0]; getitem_8 = None
getitem_8 = convolution_backward[0]
getitem_9: "f32[3, 1, 1, 1]" = convolution_backward[1]
getitem_10: "f32[3]" = convolution_backward[2]; convolution_backward = None
return (getitem_3, getitem_4, add, sum_1, detach_10, getitem_9, getitem_10, getitem_6, getitem_7)
@ -4954,7 +4954,7 @@ def forward(self, arg0_1):
"""\
def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(arg0_1, 4)
add_1 = torch.ops.aten.add.Tensor(add, 5); add = add_1 = None
add_1 = torch.ops.aten.add.Tensor(add, 5); add = None
cos = torch.ops.aten.cos.default(arg0_1); arg0_1 = None
return (cos,)""",
)
@ -4964,7 +4964,7 @@ def forward(self, arg0_1):
"""\
def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(arg0_1, 5)
add_1 = torch.ops.aten.add.Tensor(add, 6); add = add_1 = None
add_1 = torch.ops.aten.add.Tensor(add, 6); add = None
sin = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
return (sin,)""",
)

View File

@ -446,7 +446,7 @@ def forward(self, pred_1, x_1, y_1, z_1):
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, z_1, y_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = z_1 = y_1 = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]; cond_1 = getitem_2 = None
getitem_2 = cond_1[1]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
@ -505,10 +505,10 @@ def forward(self, pred_1, x_1):
_param_constant1_1 = self._param_constant1
_tensor_constant0_1 = self._tensor_constant0
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, _param_constant0_1, _param_constant1_1, x_1, _tensor_constant0_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = _param_constant0_1 = _param_constant1_1 = x_1 = _tensor_constant0_1 = None
getitem_1 = cond_1[0]; getitem_1 = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]; getitem_3 = None
getitem_4 = cond_1[3]; cond_1 = getitem_4 = None
getitem_3 = cond_1[2]
getitem_4 = cond_1[3]; cond_1 = None
return (getitem_2,)""", # noqa: B950
)
@ -621,7 +621,7 @@ def forward(self, pred_1, a_1, b_1, c_1):
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, a_1, b_1, c_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = a_1 = b_1 = c_1 = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]; cond_1 = getitem_3 = None
getitem_3 = cond_1[2]; cond_1 = None
return (getitem_1, getitem_2)""", # noqa: B950
)
# Forward
@ -637,7 +637,7 @@ def forward(self, arg0_1, arg1_1, arg2_1):
gm.true_graph_1.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
add = torch.ops.aten.add.Tensor(arg1_1, arg2_1); arg1_1 = arg2_1 = add = None
add = torch.ops.aten.add.Tensor(arg1_1, arg2_1); arg1_1 = arg2_1 = None
clone = torch.ops.aten.clone.default(arg0_1)
clone_1 = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
return [clone, clone_1, None]""",
@ -695,7 +695,7 @@ def forward(self, pred_1):
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, _tensor_constant0_1, _tensor_constant1_1, _tensor_constant2_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = _tensor_constant0_1 = _tensor_constant1_1 = _tensor_constant2_1 = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]; cond_1 = getitem_3 = None
getitem_3 = cond_1[2]; cond_1 = None
return (getitem_1, getitem_2)""", # noqa: B950
)
@ -823,12 +823,12 @@ def forward(self, pred_1, x_1):
_param_constant5_1 = self._param_constant5
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (ones_like, x_1, _param_constant0_1, _param_constant1_1, _param_constant2_1, _param_constant3_1, _param_constant4_1, _param_constant5_1)); pred_1 = true_graph_1 = false_graph_1 = ones_like = x_1 = _param_constant0_1 = _param_constant1_1 = _param_constant2_1 = _param_constant3_1 = _param_constant4_1 = _param_constant5_1 = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]; getitem_2 = None
getitem_3 = cond_1[2]; getitem_3 = None
getitem_4 = cond_1[3]; getitem_4 = None
getitem_5 = cond_1[4]; getitem_5 = None
getitem_6 = cond_1[5]; getitem_6 = None
getitem_7 = cond_1[6]; cond_1 = getitem_7 = None
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]
getitem_4 = cond_1[3]
getitem_5 = cond_1[4]
getitem_6 = cond_1[5]
getitem_7 = cond_1[6]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
@ -1893,7 +1893,7 @@ def forward(self, x_1):
view_2 = torch.ops.aten.view.default(view_1, [4, 5])
sin = torch.ops.aten.sin.default(view_2); view_2 = None
sum_1 = torch.ops.aten.sum.default(sin); sin = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = None
return sum_1""",
)
@ -1934,7 +1934,7 @@ def forward(self, x_1):
view_2 = torch.ops.aten.view.default(view_1, [5, 5])
cos = torch.ops.aten.cos.default(view_2); view_2 = None
sum_1 = torch.ops.aten.sum.default(cos); cos = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = None
return sum_1""",
)
@ -3495,10 +3495,10 @@ def forward(self, l_inp_, l_tmp_):
a = l_inp__1.clone(); l_inp__1 = None
a_view = a.view(-1)
tmp = l_tmp__1.clone(); l_tmp__1 = None
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
set_ = a.set_(tmp); set_ = None
mul_ = a_view.mul_(2); a_view = mul_ = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
_set_grad_enabled = torch._C._set_grad_enabled(False)
set_ = a.set_(tmp)
mul_ = a_view.mul_(2); a_view = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True)
add = a + tmp; a = tmp = None
return (add,)
""",

View File

@ -4756,8 +4756,8 @@ def forward(self, x_1) -> torch.Tensor:
view_copy = torch.ops.aten.view_copy.default(x_1, [4, 2])
add = torch.ops.aten.add.Tensor(view_copy, ones); view_copy = ones = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2]); view_copy_2 = None
copy_ = torch.ops.aten.copy_.default(x_1, view_copy_1); x_1 = copy_ = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2])
copy_ = torch.ops.aten.copy_.default(x_1, view_copy_1); x_1 = None
return view_copy_1
""",
)
@ -4799,13 +4799,13 @@ def forward(self, x_1) -> torch.Tensor:
def forward(self, inpt_1) -> torch.Tensor:
empty = torch.ops.aten.empty.memory_format([], dtype = torch.float32, device = 'cpu', pin_memory = False); empty = None
empty = torch.ops.aten.empty.memory_format([], dtype = torch.float32, device = 'cpu', pin_memory = False)
add = torch.ops.aten.add.Tensor(inpt_1, inpt_1); inpt_1 = None
view_copy = torch.ops.aten.view_copy.default(add, [4]); view_copy = None
view_copy = torch.ops.aten.view_copy.default(add, [4])
view_copy_1 = torch.ops.aten.view_copy.default(add, [4]); add = None
add_1 = torch.ops.aten.add.Tensor(view_copy_1, 1); view_copy_1 = None
view_copy_2 = torch.ops.aten.view_copy.default(add_1, [4]); add_1 = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [4]); view_copy_3 = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [4])
return view_copy_2
""",
)
@ -4829,15 +4829,15 @@ def forward(self, inpt_1) -> torch.Tensor:
def forward(self, inpt_1) -> torch.Tensor:
empty = torch.ops.aten.empty.memory_format([4], dtype = torch.float32, device = 'cpu', pin_memory = False); empty = None
empty = torch.ops.aten.empty.memory_format([4], dtype = torch.float32, device = 'cpu', pin_memory = False)
empty_1 = torch.ops.aten.empty.memory_format([2, 2], dtype = torch.float32, device = 'cpu', pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(empty_1, [4]); empty_1 = view_copy = None
view_copy = torch.ops.aten.view_copy.default(empty_1, [4]); empty_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(inpt_1, [2, 4]); inpt_1 = None
aminmax = torch.ops.aten.aminmax.default(view_copy_1, dim = 0); view_copy_1 = None
getitem = aminmax[0]
getitem_1 = aminmax[1]; aminmax = None
view_copy_2 = torch.ops.aten.view_copy.default(getitem_1, [2, 2]); getitem_1 = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [4]); view_copy_3 = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [4])
return (view_copy_2, getitem)
""",
)
@ -4862,8 +4862,8 @@ def forward(self, x_1) -> torch.Tensor:
view = torch.ops.aten.view.default(x_1, [4, 2])
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2]); view_2 = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = copy_ = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2])
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = None
return view_1
""",
)
@ -4952,7 +4952,7 @@ def forward(self, x_1):
resize = torch.ops.aten.resize.default(x_1, [10])
fill = torch.ops.aten.fill.Scalar(resize, 2); resize = None
resize_ = torch.ops.aten.resize_.default(x_1, [10]); x_1 = None
copy_ = torch.ops.aten.copy_.default(resize_, fill); resize_ = fill = copy_ = None
copy_ = torch.ops.aten.copy_.default(resize_, fill); resize_ = fill = None
return None
""",
)

View File

@ -76,7 +76,7 @@ def forward(self, arg1_1):
add = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2 = with_effects_1[0]; with_effects_1 = None
_sink_tokens_default = torch.ops.prims._sink_tokens.default((getitem_2,)); getitem_2 = _sink_tokens_default = None
_sink_tokens_default = torch.ops.prims._sink_tokens.default((getitem_2,)); getitem_2 = None
return (add,)""", # noqa: B950
)

View File

@ -249,22 +249,22 @@ def forward(self, arg0_1):
relu = torch.ops.aten.relu.default(view_copy_1); view_copy_1 = None
view_copy_2 = torch.ops.aten.view_copy.default(relu, [1, 1024, 128, 128]); relu = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [16, 64, 128, 128]); view_copy_2 = None
view_copy_4 = torch.ops.aten.view_copy.default(clone, [16, 64, 128, 128]); clone = view_copy_4 = None
view_copy_4 = torch.ops.aten.view_copy.default(clone, [16, 64, 128, 128]); clone = None
sum_1 = torch.ops.aten.sum.default(view_copy_3)
ones_like = torch.ops.aten.ones_like.default(sum_1, pin_memory = False, memory_format = torch.preserve_format); sum_1 = None
expand_copy = torch.ops.aten.expand_copy.default(ones_like, [16, 64, 128, 128]); ones_like = None
view_copy_5 = torch.ops.aten.view_copy.default(expand_copy, [1, 1024, 128, 128]); expand_copy = None
new_empty_strided = torch.ops.aten.new_empty_strided.default(view_copy_5, [1, 1024, 128, 128], [16777216, 16384, 128, 1])
copy = torch.ops.aten.copy.default(new_empty_strided, view_copy_5); new_empty_strided = view_copy_5 = None
view_copy_6 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128]); view_copy_6 = None
view_copy_6 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128])
view_copy_7 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128])
clone_1 = torch.ops.aten.clone.default(view_copy_7, memory_format = torch.contiguous_format)
threshold_backward = torch.ops.aten.threshold_backward.default(clone_1, view_copy_3, 0); clone_1 = view_copy_3 = None
copy_1 = torch.ops.aten.copy.default(view_copy_7, threshold_backward); view_copy_7 = threshold_backward = None
view_copy_8 = torch.ops.aten.view_copy.default(copy_1, [1, 1024, 128, 128]); copy_1 = None
view_copy_9 = torch.ops.aten.view_copy.default(view_copy_8, [16, 64, 128, 128]); view_copy_9 = None
view_copy_9 = torch.ops.aten.view_copy.default(view_copy_8, [16, 64, 128, 128])
view_copy_10 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128]); copy = None
detach_copy = torch.ops.aten.detach_copy.default(view_copy_10); view_copy_10 = detach_copy = None
detach_copy = torch.ops.aten.detach_copy.default(view_copy_10); view_copy_10 = None
view_copy_11 = torch.ops.aten.view_copy.default(view_copy_8, [16, 64, 128, 128]); view_copy_8 = None
detach_copy_1 = torch.ops.aten.detach_copy.default(view_copy_11); view_copy_11 = None
return detach_copy_1
@ -294,8 +294,8 @@ def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(view_copy, ones); view_copy = ones = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_copy_1, view_copy_1); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = copy_ = None
mul = torch.ops.aten.mul.Tensor(view_copy_1, view_copy_1)
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = None
return view_copy_2
""",
)
@ -315,8 +315,8 @@ def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_1, view_1); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_1); arg0_1 = view_1 = copy_ = None
mul = torch.ops.aten.mul.Tensor(view_1, view_1)
copy_ = torch.ops.aten.copy_.default(arg0_1, view_1); arg0_1 = view_1 = None
return view_2
""",
)
@ -342,7 +342,7 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2]); arg0_1 = None
empty = torch.ops.aten.empty.memory_format([], device = device(type='cpu'), pin_memory = False); empty = None
empty = torch.ops.aten.empty.memory_format([], device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(view_copy, ones); view_copy = ones = None
mul = torch.ops.aten.mul.Tensor(add, add); add = None
return mul
@ -361,7 +361,7 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view = torch.ops.aten.view.default(arg0_1, [4, 2]); arg0_1 = None
empty = torch.ops.aten.empty.memory_format([], device = device(type='cpu'), pin_memory = False); empty = None
empty = torch.ops.aten.empty.memory_format([], device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
mul = torch.ops.aten.mul.Tensor(add, add); add = None
return mul
@ -386,11 +386,11 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False); empty = None
empty_1 = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False); empty_1 = None
empty = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
empty_1 = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
aminmax = torch.ops.aten.aminmax.default(arg0_1, dim = 0); arg0_1 = None
getitem = aminmax[0]
getitem_1 = aminmax[1]; aminmax = getitem_1 = None
getitem_1 = aminmax[1]; aminmax = None
return getitem
""",
)
@ -408,11 +408,11 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False); empty = None
empty_1 = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False); empty_1 = None
empty = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
empty_1 = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
aminmax = torch.ops.aten.aminmax.default(arg0_1, dim = 0); arg0_1 = None
getitem = aminmax[0]
getitem_1 = aminmax[1]; aminmax = getitem_1 = None
getitem_1 = aminmax[1]; aminmax = None
return getitem
""",
)
@ -440,7 +440,7 @@ def forward(self, arg0_1):
view_copy = torch.ops.aten.view_copy.default(lift_fresh_copy, [-1]); lift_fresh_copy = None
add = torch.ops.aten.add.Tensor(view_copy, 1); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [3]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [-1]); view_copy_2 = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [-1])
return view_copy_1
""",
)
@ -456,9 +456,9 @@ def forward(self, arg0_1):
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
view = torch.ops.aten.view.default(lift_fresh_copy, [-1]); lift_fresh_copy = None
add = torch.ops.aten.add_.Tensor(view, 1); add = None
add = torch.ops.aten.add_.Tensor(view, 1)
view_1 = torch.ops.aten.view.default(view, [3]); view = None
view_2 = torch.ops.aten.view.default(view_1, [-1]); view_2 = None
view_2 = torch.ops.aten.view.default(view_1, [-1])
return view_1
""",
)
@ -508,9 +508,9 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2]); view_copy = None
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(arg0_1, ones); ones = None
copy_ = torch.ops.aten.copy_.default(arg0_1, add); arg0_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(arg0_1, add); arg0_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
return view_copy_1
""",
@ -527,9 +527,9 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view = torch.ops.aten.view.default(arg0_1, [4, 2]); view = None
view = torch.ops.aten.view.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(arg0_1, ones); ones = None
copy_ = torch.ops.aten.copy_.default(arg0_1, add); arg0_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(arg0_1, add); arg0_1 = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
return view_1
""",
@ -554,11 +554,11 @@ def forward(self, arg0_1):
_fused_moving_avg_obs_fq_helper_functional = torch.ops.aten._fused_moving_avg_obs_fq_helper_functional.default(arg0_1, arg0_1, arg0_1, arg0_1, arg0_1, arg0_1, arg0_1, 1.0, 0, 1, 0)
getitem = _fused_moving_avg_obs_fq_helper_functional[0]
getitem_1 = _fused_moving_avg_obs_fq_helper_functional[1]
getitem_2 = _fused_moving_avg_obs_fq_helper_functional[2]; getitem_2 = None
getitem_3 = _fused_moving_avg_obs_fq_helper_functional[3]; getitem_3 = None
getitem_4 = _fused_moving_avg_obs_fq_helper_functional[4]; getitem_4 = None
getitem_2 = _fused_moving_avg_obs_fq_helper_functional[2]
getitem_3 = _fused_moving_avg_obs_fq_helper_functional[3]
getitem_4 = _fused_moving_avg_obs_fq_helper_functional[4]
getitem_5 = _fused_moving_avg_obs_fq_helper_functional[5]; _fused_moving_avg_obs_fq_helper_functional = None
copy_ = torch.ops.aten.copy_.default(arg0_1, getitem_5); arg0_1 = getitem_5 = copy_ = None
copy_ = torch.ops.aten.copy_.default(arg0_1, getitem_5); arg0_1 = getitem_5 = None
return (getitem, getitem_1)
""", # noqa: B950
)
@ -581,8 +581,8 @@ def forward(self, arg0_1):
as_strided_copy = torch.ops.aten.as_strided_copy.default(arg0_1, [2], [2], 1)
add = torch.ops.aten.add.Tensor(as_strided_copy, 1); as_strided_copy = None
as_strided_scatter = torch.ops.aten.as_strided_scatter.default(arg0_1, add, [2], [2], 1); add = None
as_strided_copy_1 = torch.ops.aten.as_strided_copy.default(as_strided_scatter, [2], [2], 1); as_strided_copy_1 = None
copy_ = torch.ops.aten.copy_.default(arg0_1, as_strided_scatter); arg0_1 = copy_ = None
as_strided_copy_1 = torch.ops.aten.as_strided_copy.default(as_strided_scatter, [2], [2], 1)
copy_ = torch.ops.aten.copy_.default(arg0_1, as_strided_scatter); arg0_1 = None
return as_strided_scatter
""",
)
@ -601,8 +601,8 @@ def forward(self, arg0_1):
as_strided = torch.ops.aten.as_strided.default(arg0_1, [2], [2], 1)
add = torch.ops.aten.add.Tensor(as_strided, 1); as_strided = None
as_strided_scatter = torch.ops.aten.as_strided_scatter.default(arg0_1, add, [2], [2], 1); add = None
as_strided_1 = torch.ops.aten.as_strided.default(as_strided_scatter, [2], [2], 1); as_strided_1 = None
copy_ = torch.ops.aten.copy_.default(arg0_1, as_strided_scatter); arg0_1 = copy_ = None
as_strided_1 = torch.ops.aten.as_strided.default(as_strided_scatter, [2], [2], 1)
copy_ = torch.ops.aten.copy_.default(arg0_1, as_strided_scatter); arg0_1 = None
return as_strided_scatter
""",
)
@ -642,7 +642,7 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([0], device = device(type='cpu'), pin_memory = False); empty = None
empty = torch.ops.aten.empty.memory_format([0], device = device(type='cpu'), pin_memory = False)
cat = torch.ops.aten.cat.default([arg0_1]); arg0_1 = None
return cat
""",
@ -658,7 +658,7 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([0], device = device(type='cpu'), pin_memory = False); empty = None
empty = torch.ops.aten.empty.memory_format([0], device = device(type='cpu'), pin_memory = False)
cat = torch.ops.aten.cat.default([arg0_1]); arg0_1 = None
return cat
""",
@ -687,7 +687,7 @@ def forward(self, arg0_1):
diagonal_copy = torch.ops.aten.diagonal_copy.default(clone)
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(clone, add); clone = add = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter); diagonal_scatter = diagonal_copy_1 = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter); diagonal_scatter = None
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
return mul
""",
@ -706,8 +706,8 @@ def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
clone = torch.ops.aten.clone.default(arg0_1)
diagonal = torch.ops.aten.diagonal.default(clone)
add = torch.ops.aten.add_.Tensor(diagonal, ones); diagonal = ones = add = None
diagonal_1 = torch.ops.aten.diagonal.default(clone); clone = diagonal_1 = None
add = torch.ops.aten.add_.Tensor(diagonal, ones); diagonal = ones = None
diagonal_1 = torch.ops.aten.diagonal.default(clone); clone = None
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
return mul
""",
@ -735,8 +735,8 @@ def forward(self, arg0_1):
diagonal_copy = torch.ops.aten.diagonal_copy.default(arg0_1)
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(arg0_1, add); add = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter); diagonal_copy_1 = None
copy_ = torch.ops.aten.copy_.default(arg0_1, diagonal_scatter); arg0_1 = copy_ = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, diagonal_scatter); arg0_1 = None
return diagonal_scatter
""",
)
@ -756,8 +756,8 @@ def forward(self, arg0_1):
diagonal = torch.ops.aten.diagonal.default(arg0_1)
add = torch.ops.aten.add.Tensor(diagonal, ones); diagonal = ones = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(arg0_1, add); add = None
diagonal_1 = torch.ops.aten.diagonal.default(diagonal_scatter); diagonal_1 = None
copy_ = torch.ops.aten.copy_.default(arg0_1, diagonal_scatter); arg0_1 = copy_ = None
diagonal_1 = torch.ops.aten.diagonal.default(diagonal_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, diagonal_scatter); arg0_1 = None
return diagonal_scatter
""",
)
@ -802,21 +802,21 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
split_copy = torch.ops.aten.split_copy.Tensor(arg0_1, 2)
getitem = split_copy[0]; getitem = None
getitem = split_copy[0]
getitem_1 = split_copy[1]; split_copy = None
diagonal_copy = torch.ops.aten.diagonal_copy.default(getitem_1); getitem_1 = None
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
split_copy_1 = torch.ops.aten.split_copy.Tensor(arg0_1, 2)
getitem_2 = split_copy_1[0]; getitem_2 = None
getitem_2 = split_copy_1[0]
getitem_3 = split_copy_1[1]; split_copy_1 = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(getitem_3, add); getitem_3 = add = None
slice_scatter = torch.ops.aten.slice_scatter.default(arg0_1, diagonal_scatter, 0, 2, 4); diagonal_scatter = None
split_copy_2 = torch.ops.aten.split_copy.Tensor(slice_scatter, 2)
getitem_4 = split_copy_2[0]; getitem_4 = None
getitem_4 = split_copy_2[0]
getitem_5 = split_copy_2[1]; split_copy_2 = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(getitem_5); getitem_5 = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = copy_ = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = None
return diagonal_copy_1
""",
) # noqa: B950
@ -834,21 +834,21 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
split = torch.ops.aten.split.Tensor(arg0_1, 2)
getitem = split[0]; getitem = None
getitem = split[0]
getitem_1 = split[1]; split = None
diagonal = torch.ops.aten.diagonal.default(getitem_1); getitem_1 = None
add = torch.ops.aten.add.Tensor(diagonal, ones); diagonal = ones = None
split_1 = torch.ops.aten.split.Tensor(arg0_1, 2)
getitem_2 = split_1[0]; getitem_2 = None
getitem_2 = split_1[0]
getitem_3 = split_1[1]; split_1 = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(getitem_3, add); getitem_3 = add = None
slice_scatter = torch.ops.aten.slice_scatter.default(arg0_1, diagonal_scatter, 0, 2, 4); diagonal_scatter = None
split_2 = torch.ops.aten.split.Tensor(slice_scatter, 2)
getitem_4 = split_2[0]; getitem_4 = None
getitem_4 = split_2[0]
getitem_5 = split_2[1]; split_2 = None
diagonal_1 = torch.ops.aten.diagonal.default(getitem_5); getitem_5 = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = copy_ = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = None
return diagonal_1
""",
) # noqa: B950
@ -875,20 +875,20 @@ def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
split_with_sizes_copy = torch.ops.aten.split_with_sizes_copy.default(arg0_1, [2, 2])
getitem = split_with_sizes_copy[0]
getitem_1 = split_with_sizes_copy[1]; split_with_sizes_copy = getitem_1 = None
getitem_1 = split_with_sizes_copy[1]; split_with_sizes_copy = None
diagonal_copy = torch.ops.aten.diagonal_copy.default(getitem); getitem = None
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
split_with_sizes_copy_1 = torch.ops.aten.split_with_sizes_copy.default(arg0_1, [2, 2])
getitem_2 = split_with_sizes_copy_1[0]
getitem_3 = split_with_sizes_copy_1[1]; split_with_sizes_copy_1 = getitem_3 = None
getitem_3 = split_with_sizes_copy_1[1]; split_with_sizes_copy_1 = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(getitem_2, add); getitem_2 = add = None
slice_scatter = torch.ops.aten.slice_scatter.default(arg0_1, diagonal_scatter, 0, 0, 2); diagonal_scatter = None
split_with_sizes_copy_2 = torch.ops.aten.split_with_sizes_copy.default(slice_scatter, [2, 2])
getitem_4 = split_with_sizes_copy_2[0]
getitem_5 = split_with_sizes_copy_2[1]; split_with_sizes_copy_2 = getitem_5 = None
getitem_5 = split_with_sizes_copy_2[1]; split_with_sizes_copy_2 = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(getitem_4); getitem_4 = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = copy_ = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = None
return diagonal_copy_1
""",
) # noqa: B950
@ -907,20 +907,20 @@ def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
split_with_sizes = torch.ops.aten.split_with_sizes.default(arg0_1, [2, 2])
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]; split_with_sizes = getitem_1 = None
getitem_1 = split_with_sizes[1]; split_with_sizes = None
diagonal = torch.ops.aten.diagonal.default(getitem); getitem = None
add = torch.ops.aten.add.Tensor(diagonal, ones); diagonal = ones = None
split_with_sizes_1 = torch.ops.aten.split_with_sizes.default(arg0_1, [2, 2])
getitem_2 = split_with_sizes_1[0]
getitem_3 = split_with_sizes_1[1]; split_with_sizes_1 = getitem_3 = None
getitem_3 = split_with_sizes_1[1]; split_with_sizes_1 = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(getitem_2, add); getitem_2 = add = None
slice_scatter = torch.ops.aten.slice_scatter.default(arg0_1, diagonal_scatter, 0, 0, 2); diagonal_scatter = None
split_with_sizes_2 = torch.ops.aten.split_with_sizes.default(slice_scatter, [2, 2])
getitem_4 = split_with_sizes_2[0]
getitem_5 = split_with_sizes_2[1]; split_with_sizes_2 = getitem_5 = None
getitem_5 = split_with_sizes_2[1]; split_with_sizes_2 = None
diagonal_1 = torch.ops.aten.diagonal.default(getitem_4); getitem_4 = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = copy_ = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = None
return diagonal_1
""",
) # noqa: B950
@ -950,7 +950,7 @@ def forward(self, arg0_1):
slice_scatter = torch.ops.aten.slice_scatter.default(transpose_copy_1, add, 0, 0, 2); transpose_copy_1 = add = None
transpose_copy_2 = torch.ops.aten.transpose_copy.int(slice_scatter, 1, 0); slice_scatter = None
transpose_copy_3 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0)
slice_copy_1 = torch.ops.aten.slice_copy.Tensor(transpose_copy_3, 0, 0, 2); transpose_copy_3 = slice_copy_1 = None
slice_copy_1 = torch.ops.aten.slice_copy.Tensor(transpose_copy_3, 0, 0, 2); transpose_copy_3 = None
transpose_copy_4 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0); transpose_copy_2 = None
return transpose_copy_4
""",
@ -975,7 +975,7 @@ def forward(self, arg0_1):
slice_scatter = torch.ops.aten.slice_scatter.default(transpose_1, add, 0, 0, 2); transpose_1 = add = None
transpose_2 = torch.ops.aten.transpose.int(slice_scatter, 1, 0); slice_scatter = None
transpose_3 = torch.ops.aten.transpose.int(transpose_2, 1, 0)
slice_2 = torch.ops.aten.slice.Tensor(transpose_3, 0, 0, 2); transpose_3 = slice_2 = None
slice_2 = torch.ops.aten.slice.Tensor(transpose_3, 0, 0, 2); transpose_3 = None
transpose_4 = torch.ops.aten.transpose.int(transpose_2, 1, 0); transpose_2 = None
return transpose_4
""",
@ -1007,7 +1007,7 @@ def forward(self, arg0_1):
select_scatter = torch.ops.aten.select_scatter.default(transpose_copy_1, add, 0, 0); transpose_copy_1 = add = None
transpose_copy_2 = torch.ops.aten.transpose_copy.int(select_scatter, 1, 0); select_scatter = None
transpose_copy_3 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0)
select_copy_1 = torch.ops.aten.select_copy.int(transpose_copy_3, 0, 0); transpose_copy_3 = select_copy_1 = None
select_copy_1 = torch.ops.aten.select_copy.int(transpose_copy_3, 0, 0); transpose_copy_3 = None
transpose_copy_4 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0); transpose_copy_2 = None
return transpose_copy_4
""",
@ -1032,7 +1032,7 @@ def forward(self, arg0_1):
select_scatter = torch.ops.aten.select_scatter.default(transpose_1, add, 0, 0); transpose_1 = add = None
transpose_2 = torch.ops.aten.transpose.int(select_scatter, 1, 0); select_scatter = None
transpose_3 = torch.ops.aten.transpose.int(transpose_2, 1, 0)
select_1 = torch.ops.aten.select.int(transpose_3, 0, 0); transpose_3 = select_1 = None
select_1 = torch.ops.aten.select.int(transpose_3, 0, 0); transpose_3 = None
transpose_4 = torch.ops.aten.transpose.int(transpose_2, 1, 0); transpose_2 = None
return transpose_4
""",
@ -1060,15 +1060,15 @@ def forward(self, arg0_1):
transpose_copy = torch.ops.aten.transpose_copy.int(arg0_1, 1, 0)
unbind_copy = torch.ops.aten.unbind_copy.int(transpose_copy); transpose_copy = None
getitem = unbind_copy[0]
getitem_1 = unbind_copy[1]; unbind_copy = getitem_1 = None
getitem_1 = unbind_copy[1]; unbind_copy = None
add = torch.ops.aten.add.Tensor(getitem, ones); getitem = ones = None
transpose_copy_1 = torch.ops.aten.transpose_copy.int(arg0_1, 1, 0); arg0_1 = None
select_scatter = torch.ops.aten.select_scatter.default(transpose_copy_1, add, 0, 0); transpose_copy_1 = add = None
transpose_copy_2 = torch.ops.aten.transpose_copy.int(select_scatter, 1, 0); select_scatter = None
transpose_copy_3 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0)
unbind_copy_1 = torch.ops.aten.unbind_copy.int(transpose_copy_3); transpose_copy_3 = None
getitem_2 = unbind_copy_1[0]; getitem_2 = None
getitem_3 = unbind_copy_1[1]; unbind_copy_1 = getitem_3 = None
getitem_2 = unbind_copy_1[0]
getitem_3 = unbind_copy_1[1]; unbind_copy_1 = None
transpose_copy_4 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0); transpose_copy_2 = None
return transpose_copy_4
""",
@ -1089,15 +1089,15 @@ def forward(self, arg0_1):
transpose = torch.ops.aten.transpose.int(arg0_1, 1, 0)
unbind = torch.ops.aten.unbind.int(transpose); transpose = None
getitem = unbind[0]
getitem_1 = unbind[1]; unbind = getitem_1 = None
getitem_1 = unbind[1]; unbind = None
add = torch.ops.aten.add.Tensor(getitem, ones); getitem = ones = None
transpose_1 = torch.ops.aten.transpose.int(arg0_1, 1, 0); arg0_1 = None
select_scatter = torch.ops.aten.select_scatter.default(transpose_1, add, 0, 0); transpose_1 = add = None
transpose_2 = torch.ops.aten.transpose.int(select_scatter, 1, 0); select_scatter = None
transpose_3 = torch.ops.aten.transpose.int(transpose_2, 1, 0)
unbind_1 = torch.ops.aten.unbind.int(transpose_3); transpose_3 = None
getitem_2 = unbind_1[0]; getitem_2 = None
getitem_3 = unbind_1[1]; unbind_1 = getitem_3 = None
getitem_2 = unbind_1[0]
getitem_3 = unbind_1[1]; unbind_1 = None
transpose_4 = torch.ops.aten.transpose.int(transpose_2, 1, 0); transpose_2 = None
return transpose_4
""",
@ -1128,7 +1128,7 @@ def forward(self, arg0_1):
index_put = torch.ops.aten.index_put.default(view_copy, [arange], arange_1); view_copy = arange = arange_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(index_put, [4, 2]); index_put = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [8])
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = None
return view_copy_2
""",
) # noqa: B950
@ -1152,14 +1152,14 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False); ones = None
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(view_copy, 1); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_copy_2, 2); view_copy_2 = None
div = torch.ops.aten.div.Tensor(mul, 1); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = copy_ = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = None
return div
""",
)
@ -1278,7 +1278,7 @@ def forward(self, arg0_1):
squeeze_copy = torch.ops.aten.squeeze_copy.default(unsqueeze_copy); unsqueeze_copy = None
split_copy = torch.ops.aten.split_copy.Tensor(squeeze_copy, 2); squeeze_copy = None
getitem = split_copy[0]
getitem_1 = split_copy[1]; split_copy = getitem_1 = None
getitem_1 = split_copy[1]; split_copy = None
add_1 = torch.ops.aten.add.Tensor(getitem, ones); getitem = ones = None
view_copy_2 = torch.ops.aten.view_copy.default(add, [8]); add = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [2, 4]); view_copy_2 = None
@ -1298,9 +1298,9 @@ def forward(self, arg0_1):
squeeze_copy_3 = torch.ops.aten.squeeze_copy.default(unsqueeze_copy_3); unsqueeze_copy_3 = None
split_copy_1 = torch.ops.aten.split_copy.Tensor(squeeze_copy_3, 2); squeeze_copy_3 = None
getitem_2 = split_copy_1[0]
getitem_3 = split_copy_1[1]; split_copy_1 = getitem_3 = None
select_copy = torch.ops.aten.select_copy.int(view_copy_1, 0, 0); view_copy_1 = select_copy = None
view_copy_8 = torch.ops.aten.view_copy.default(getitem_2, [4]); view_copy_8 = None
getitem_3 = split_copy_1[1]; split_copy_1 = None
select_copy = torch.ops.aten.select_copy.int(view_copy_1, 0, 0); view_copy_1 = None
view_copy_8 = torch.ops.aten.view_copy.default(getitem_2, [4])
view_copy_9 = torch.ops.aten.view_copy.default(view_copy_5, [8])
view_copy_10 = torch.ops.aten.view_copy.default(view_copy_9, [2, 4]); view_copy_9 = None
select_copy_1 = torch.ops.aten.select_copy.int(view_copy_10, 0, 0); view_copy_10 = None
@ -1311,9 +1311,9 @@ def forward(self, arg0_1):
squeeze_copy_4 = torch.ops.aten.squeeze_copy.default(unsqueeze_copy_4); unsqueeze_copy_4 = None
split_copy_2 = torch.ops.aten.split_copy.Tensor(squeeze_copy_4, 2); squeeze_copy_4 = None
getitem_4 = split_copy_2[0]
getitem_5 = split_copy_2[1]; split_copy_2 = getitem_5 = None
getitem_5 = split_copy_2[1]; split_copy_2 = None
view_copy_13 = torch.ops.aten.view_copy.default(getitem_4, [4]); getitem_4 = None
add_2 = torch.ops.aten.add.Tensor(select_copy_1, view_copy_13); select_copy_1 = view_copy_13 = add_2 = None
add_2 = torch.ops.aten.add.Tensor(select_copy_1, view_copy_13); select_copy_1 = view_copy_13 = None
return getitem_2
""",
) # noqa: B950
@ -1337,8 +1337,8 @@ def forward(self, arg0_1):
squeeze = torch.ops.aten.squeeze.default(unsqueeze); unsqueeze = None
split = torch.ops.aten.split.Tensor(squeeze, 2); squeeze = None
getitem = split[0]
getitem_1 = split[1]; split = getitem_1 = None
add_1 = torch.ops.aten.add_.Tensor(getitem, ones); getitem = ones = add_1 = None
getitem_1 = split[1]; split = None
add_1 = torch.ops.aten.add_.Tensor(getitem, ones); getitem = ones = None
view_2 = torch.ops.aten.view.default(add, [8]); add = None
view_3 = torch.ops.aten.view.default(view_2, [2, 4]); view_2 = None
transpose_1 = torch.ops.aten.transpose.int(view_3, 1, 0); view_3 = None
@ -1356,14 +1356,14 @@ def forward(self, arg0_1):
squeeze_3 = torch.ops.aten.squeeze.default(unsqueeze_3); unsqueeze_3 = None
split_1 = torch.ops.aten.split.Tensor(squeeze_3, 2); squeeze_3 = None
getitem_2 = split_1[0]
getitem_3 = split_1[1]; split_1 = getitem_3 = None
select = torch.ops.aten.select.int(view_1, 0, 0); view_1 = select = None
getitem_3 = split_1[1]; split_1 = None
select = torch.ops.aten.select.int(view_1, 0, 0); view_1 = None
clone = torch.ops.aten.clone.default(getitem_2, memory_format = torch.contiguous_format)
_unsafe_view = torch.ops.aten._unsafe_view.default(clone, [4]); clone = None
view_8 = torch.ops.aten.view.default(view_5, [8]); view_5 = None
view_9 = torch.ops.aten.view.default(view_8, [2, 4]); view_8 = None
select_1 = torch.ops.aten.select.int(view_9, 0, 0); view_9 = None
add_2 = torch.ops.aten.add.Tensor(select_1, _unsafe_view); select_1 = _unsafe_view = add_2 = None
add_2 = torch.ops.aten.add.Tensor(select_1, _unsafe_view); select_1 = _unsafe_view = None
return getitem_2
""",
)
@ -1390,8 +1390,8 @@ def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_1, view_1); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_1); arg0_1 = view_1 = copy_ = None
mul = torch.ops.aten.mul.Tensor(view_1, view_1)
copy_ = torch.ops.aten.copy_.default(arg0_1, view_1); arg0_1 = view_1 = None
return view_2
""",
)
@ -1463,9 +1463,9 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = copy = None
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = None
diagonal_1 = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = add = None
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = None
diagonal_2 = torch.ops.aten.diagonal.default(zeros); zeros = None
return diagonal_2
""",
@ -1505,9 +1505,9 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = copy = None
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = None
diagonal_1 = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = add = None
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = None
diagonal_2 = torch.ops.aten.diagonal.default(zeros); zeros = None
return diagonal_2
""",
@ -1547,9 +1547,9 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = copy = None
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = None
diagonal_1 = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = add = None
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = None
diagonal_2 = torch.ops.aten.diagonal.default(zeros); zeros = None
return diagonal_2
""",
@ -1589,9 +1589,9 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = copy = None
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = None
diagonal_1 = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = add = None
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = None
diagonal_2 = torch.ops.aten.diagonal.default(zeros); zeros = None
return diagonal_2
""",
@ -1637,7 +1637,7 @@ def forward(self, arg0_1):
diagonal_copy = torch.ops.aten.diagonal_copy.default(add)
fill = torch.ops.aten.fill.Scalar(diagonal_copy, 0); diagonal_copy = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(add, fill); add = fill = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter); diagonal_copy_1 = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter)
return diagonal_scatter
""",
)
@ -1654,8 +1654,8 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(arg0_1, arg0_1); arg0_1 = None
diagonal = torch.ops.aten.diagonal.default(add)
fill = torch.ops.aten.fill_.Scalar(diagonal, 0); diagonal = fill = None
diagonal_1 = torch.ops.aten.diagonal.default(add); diagonal_1 = None
fill = torch.ops.aten.fill_.Scalar(diagonal, 0); diagonal = None
diagonal_1 = torch.ops.aten.diagonal.default(add)
return add
""",
)
@ -1682,18 +1682,18 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(arg0_1, 1); arg0_1 = None
view_copy = torch.ops.aten.view_copy.default(add, [4, 4])
resize = torch.ops.aten.resize.default(view_copy, [3, 3]); resize = None
resize = torch.ops.aten.resize.default(view_copy, [3, 3])
as_strided_copy = torch.ops.aten.as_strided_copy.default(view_copy, [3, 3], [3, 1]); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(as_strided_copy, [-1]); as_strided_copy = None
add_1 = torch.ops.aten.add.Tensor(view_copy_1, 1); view_copy_1 = None
view_copy_2 = torch.ops.aten.view_copy.default(add, [4, 4]); add = None
as_strided_copy_1 = torch.ops.aten.as_strided_copy.default(view_copy_2, [3, 3], [3, 1]); as_strided_copy_1 = None
as_strided_copy_1 = torch.ops.aten.as_strided_copy.default(view_copy_2, [3, 3], [3, 1])
view_copy_3 = torch.ops.aten.view_copy.default(add_1, [3, 3]); add_1 = None
as_strided_scatter = torch.ops.aten.as_strided_scatter.default(view_copy_2, view_copy_3, [3, 3], [3, 1]); view_copy_2 = view_copy_3 = None
view_copy_4 = torch.ops.aten.view_copy.default(as_strided_scatter, [8, 2]); as_strided_scatter = None
view_copy_5 = torch.ops.aten.view_copy.default(view_copy_4, [4, 4])
as_strided_copy_2 = torch.ops.aten.as_strided_copy.default(view_copy_5, [3, 3], [3, 1]); view_copy_5 = None
view_copy_6 = torch.ops.aten.view_copy.default(as_strided_copy_2, [-1]); as_strided_copy_2 = view_copy_6 = None
view_copy_6 = torch.ops.aten.view_copy.default(as_strided_copy_2, [-1]); as_strided_copy_2 = None
view_copy_7 = torch.ops.aten.view_copy.default(view_copy_4, [4, 4]); view_copy_4 = None
as_strided_copy_3 = torch.ops.aten.as_strided_copy.default(view_copy_7, [3, 3], [3, 1]); view_copy_7 = None
add_2 = torch.ops.aten.add.Tensor(as_strided_copy_3, 1); as_strided_copy_3 = None
@ -1713,20 +1713,20 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(arg0_1, 1); arg0_1 = None
view = torch.ops.aten.view.default(add, [4, 4])
resize = torch.ops.aten.resize.default(view, [3, 3]); resize = None
resize = torch.ops.aten.resize.default(view, [3, 3])
as_strided = torch.ops.aten.as_strided.default(view, [3, 3], [3, 1]); view = None
view_1 = torch.ops.aten.view.default(as_strided, [-1]); as_strided = None
add_1 = torch.ops.aten.add_.Tensor(view_1, 1); add_1 = None
add_1 = torch.ops.aten.add_.Tensor(view_1, 1)
view_2 = torch.ops.aten.view.default(add, [4, 4]); add = None
as_strided_1 = torch.ops.aten.as_strided.default(view_2, [3, 3], [3, 1]); as_strided_1 = None
view_3 = torch.ops.aten.view.default(view_1, [3, 3]); view_1 = view_3 = None
as_strided_1 = torch.ops.aten.as_strided.default(view_2, [3, 3], [3, 1])
view_3 = torch.ops.aten.view.default(view_1, [3, 3]); view_1 = None
view_4 = torch.ops.aten.view.default(view_2, [8, 2]); view_2 = None
view_5 = torch.ops.aten.view.default(view_4, [4, 4])
as_strided_2 = torch.ops.aten.as_strided.default(view_5, [3, 3], [3, 1]); view_5 = None
view_6 = torch.ops.aten.view.default(as_strided_2, [-1]); as_strided_2 = view_6 = None
view_6 = torch.ops.aten.view.default(as_strided_2, [-1]); as_strided_2 = None
view_7 = torch.ops.aten.view.default(view_4, [4, 4]); view_4 = None
as_strided_3 = torch.ops.aten.as_strided.default(view_7, [3, 3], [3, 1]); view_7 = None
add_2 = torch.ops.aten.add_.Tensor(as_strided_3, 1); add_2 = None
add_2 = torch.ops.aten.add_.Tensor(as_strided_3, 1)
return as_strided_3
""",
)
@ -1770,7 +1770,7 @@ def forward(self, arg0_1):
view_copy = torch.ops.aten.view_copy.default(resize, [25]); resize = None
fill = torch.ops.aten.fill.Scalar(view_copy, 1); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(fill, [5, 5]); fill = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [25]); view_copy_2 = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [25])
add_1 = torch.ops.aten.add.Tensor(view_copy_1, 1)
return (view_copy_1, add_1)
""",
@ -1787,11 +1787,11 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
add = torch.ops.aten.add.Tensor(arg0_1, 1); arg0_1 = None
resize = torch.ops.aten.resize_.default(add, [5, 5]); resize = None
resize = torch.ops.aten.resize_.default(add, [5, 5])
view = torch.ops.aten.view.default(add, [25]); add = None
fill = torch.ops.aten.fill_.Scalar(view, 1); fill = None
fill = torch.ops.aten.fill_.Scalar(view, 1)
view_1 = torch.ops.aten.view.default(view, [5, 5]); view = None
view_2 = torch.ops.aten.view.default(view_1, [25]); view_2 = None
view_2 = torch.ops.aten.view.default(view_1, [25])
add_1 = torch.ops.aten.add.Tensor(view_1, 1)
return (view_1, add_1)
""",
@ -1883,7 +1883,7 @@ def forward(self, arg0_1):
select_copy = torch.ops.aten.select_copy.int(zeros, 0, 5)
fill = torch.ops.aten.fill.Scalar(select_copy, 1); select_copy = None
select_scatter = torch.ops.aten.select_scatter.default(zeros, fill, 0, 5); zeros = fill = None
select_copy_1 = torch.ops.aten.select_copy.int(select_scatter, 0, 5); select_copy_1 = None
select_copy_1 = torch.ops.aten.select_copy.int(select_scatter, 0, 5)
return select_scatter
""",
) # noqa: B950
@ -1900,8 +1900,8 @@ def forward(self, arg0_1):
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([10], device = device(type='cpu'), pin_memory = False)
select = torch.ops.aten.select.int(zeros, 0, 5)
fill = torch.ops.aten.fill_.Scalar(select, 1); select = fill = None
select_1 = torch.ops.aten.select.int(zeros, 0, 5); select_1 = None
fill = torch.ops.aten.fill_.Scalar(select, 1); select = None
select_1 = torch.ops.aten.select.int(zeros, 0, 5)
return zeros
""",
)
@ -1943,30 +1943,30 @@ def forward(self, arg0_1, arg1_1, arg2_1):
repeat = torch.ops.aten.repeat.default(arg1_1, [20])
repeat_1 = torch.ops.aten.repeat.default(arg2_1, [20])
view_copy = torch.ops.aten.view_copy.default(arg0_1, [1, 2000, 35, 45]); arg0_1 = None
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu')); empty = None
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu'))
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(view_copy, None, None, repeat, repeat_1, True, 0.1, 1e-05); view_copy = repeat = repeat_1 = None
getitem = _native_batch_norm_legit_functional[0]
getitem_1 = _native_batch_norm_legit_functional[1]; getitem_1 = None
getitem_2 = _native_batch_norm_legit_functional[2]; getitem_2 = None
getitem_1 = _native_batch_norm_legit_functional[1]
getitem_2 = _native_batch_norm_legit_functional[2]
getitem_3 = _native_batch_norm_legit_functional[3]
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
alias_copy = torch.ops.aten.alias_copy.default(arg1_1)
view_copy_1 = torch.ops.aten.view_copy.default(getitem_3, [20, 100]); view_copy_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(getitem_3, [20, 100])
view_copy_2 = torch.ops.aten.view_copy.default(getitem_3, [20, 100]); getitem_3 = None
mean = torch.ops.aten.mean.dim(view_copy_2, [0]); view_copy_2 = None
copy = torch.ops.aten.copy.default(alias_copy, mean); alias_copy = mean = None
alias_copy_1 = torch.ops.aten.alias_copy.default(copy); copy = None
alias_copy_2 = torch.ops.aten.alias_copy.default(alias_copy_1); alias_copy_2 = None
alias_copy_2 = torch.ops.aten.alias_copy.default(alias_copy_1)
alias_copy_3 = torch.ops.aten.alias_copy.default(arg2_1)
view_copy_3 = torch.ops.aten.view_copy.default(getitem_4, [20, 100]); view_copy_3 = None
view_copy_3 = torch.ops.aten.view_copy.default(getitem_4, [20, 100])
view_copy_4 = torch.ops.aten.view_copy.default(getitem_4, [20, 100]); getitem_4 = None
mean_1 = torch.ops.aten.mean.dim(view_copy_4, [0]); view_copy_4 = None
copy_1 = torch.ops.aten.copy.default(alias_copy_3, mean_1); alias_copy_3 = mean_1 = None
alias_copy_4 = torch.ops.aten.alias_copy.default(copy_1); copy_1 = None
alias_copy_5 = torch.ops.aten.alias_copy.default(alias_copy_4); alias_copy_5 = None
alias_copy_5 = torch.ops.aten.alias_copy.default(alias_copy_4)
view_copy_5 = torch.ops.aten.view_copy.default(getitem, [20, 100, 35, 45]); getitem = None
copy_ = torch.ops.aten.copy_.default(arg1_1, alias_copy_1); arg1_1 = alias_copy_1 = copy_ = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, alias_copy_4); arg2_1 = alias_copy_4 = copy__1 = None
copy_ = torch.ops.aten.copy_.default(arg1_1, alias_copy_1); arg1_1 = alias_copy_1 = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, alias_copy_4); arg2_1 = alias_copy_4 = None
return view_copy_5
""", # noqa: B950
)
@ -1989,30 +1989,30 @@ def forward(self, arg0_1, arg1_1, arg2_1):
repeat = torch.ops.aten.repeat.default(arg1_1, [20])
repeat_1 = torch.ops.aten.repeat.default(arg2_1, [20])
view = torch.ops.aten.view.default(arg0_1, [1, 2000, 35, 45]); arg0_1 = None
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu')); empty = None
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu'))
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(view, None, None, repeat, repeat_1, True, 0.1, 1e-05); view = repeat = repeat_1 = None
getitem = _native_batch_norm_legit_functional[0]
getitem_1 = _native_batch_norm_legit_functional[1]; getitem_1 = None
getitem_2 = _native_batch_norm_legit_functional[2]; getitem_2 = None
getitem_1 = _native_batch_norm_legit_functional[1]
getitem_2 = _native_batch_norm_legit_functional[2]
getitem_3 = _native_batch_norm_legit_functional[3]
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
alias = torch.ops.aten.alias.default(arg1_1)
view_1 = torch.ops.aten.view.default(getitem_3, [20, 100]); view_1 = None
view_1 = torch.ops.aten.view.default(getitem_3, [20, 100])
view_2 = torch.ops.aten.view.default(getitem_3, [20, 100]); getitem_3 = None
mean = torch.ops.aten.mean.dim(view_2, [0]); view_2 = None
copy = torch.ops.aten.copy.default(alias, mean); alias = mean = None
alias_1 = torch.ops.aten.alias.default(copy); copy = None
alias_2 = torch.ops.aten.alias.default(alias_1); alias_2 = None
alias_2 = torch.ops.aten.alias.default(alias_1)
alias_3 = torch.ops.aten.alias.default(arg2_1)
view_3 = torch.ops.aten.view.default(getitem_4, [20, 100]); view_3 = None
view_3 = torch.ops.aten.view.default(getitem_4, [20, 100])
view_4 = torch.ops.aten.view.default(getitem_4, [20, 100]); getitem_4 = None
mean_1 = torch.ops.aten.mean.dim(view_4, [0]); view_4 = None
copy_1 = torch.ops.aten.copy.default(alias_3, mean_1); alias_3 = mean_1 = None
alias_4 = torch.ops.aten.alias.default(copy_1); copy_1 = None
alias_5 = torch.ops.aten.alias.default(alias_4); alias_5 = None
alias_5 = torch.ops.aten.alias.default(alias_4)
view_5 = torch.ops.aten.view.default(getitem, [20, 100, 35, 45]); getitem = None
copy_ = torch.ops.aten.copy_.default(arg1_1, alias_1); arg1_1 = alias_1 = copy_ = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, alias_4); arg2_1 = alias_4 = copy__1 = None
copy_ = torch.ops.aten.copy_.default(arg1_1, alias_1); arg1_1 = alias_1 = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, alias_4); arg2_1 = alias_4 = None
return view_5
""", # noqa: B950
)
@ -2052,15 +2052,15 @@ def forward(self, arg0_1, arg1_1, arg2_1):
def forward(self, arg0_1, arg1_1, arg2_1):
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu')); empty = None
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu'))
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(arg0_1, None, None, arg1_1, arg2_1, True, 0.1, 1e-05); arg0_1 = None
getitem = _native_batch_norm_legit_functional[0]
getitem_1 = _native_batch_norm_legit_functional[1]; getitem_1 = None
getitem_2 = _native_batch_norm_legit_functional[2]; getitem_2 = None
getitem_1 = _native_batch_norm_legit_functional[1]
getitem_2 = _native_batch_norm_legit_functional[2]
getitem_3 = _native_batch_norm_legit_functional[3]
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
copy_ = torch.ops.aten.copy_.default(arg1_1, getitem_3); arg1_1 = getitem_3 = copy_ = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, getitem_4); arg2_1 = getitem_4 = copy__1 = None
copy_ = torch.ops.aten.copy_.default(arg1_1, getitem_3); arg1_1 = getitem_3 = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, getitem_4); arg2_1 = getitem_4 = None
return getitem
""", # noqa: B950
)
@ -2080,15 +2080,15 @@ def forward(self, arg0_1, arg1_1, arg2_1):
def forward(self, arg0_1, arg1_1, arg2_1):
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu')); empty = None
empty = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cpu'))
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(arg0_1, None, None, arg1_1, arg2_1, True, 0.1, 1e-05); arg0_1 = None
getitem = _native_batch_norm_legit_functional[0]
getitem_1 = _native_batch_norm_legit_functional[1]; getitem_1 = None
getitem_2 = _native_batch_norm_legit_functional[2]; getitem_2 = None
getitem_1 = _native_batch_norm_legit_functional[1]
getitem_2 = _native_batch_norm_legit_functional[2]
getitem_3 = _native_batch_norm_legit_functional[3]
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
copy_ = torch.ops.aten.copy_.default(arg1_1, getitem_3); arg1_1 = getitem_3 = copy_ = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, getitem_4); arg2_1 = getitem_4 = copy__1 = None
copy_ = torch.ops.aten.copy_.default(arg1_1, getitem_3); arg1_1 = getitem_3 = None
copy__1 = torch.ops.aten.copy_.default(arg2_1, getitem_4); arg2_1 = getitem_4 = None
return getitem
""", # noqa: B950
)
@ -2129,9 +2129,9 @@ def forward(self, arg0_1, arg1_1, arg2_1):
fx_g.code.strip(),
"""\
def forward(self, x_1):
view = torch.ops.aten.view.default(x_1, [-1]); view = None
view = torch.ops.aten.view.default(x_1, [-1])
mul = torch.ops.aten.mul.Tensor(x_1, 2); x_1 = None
view_1 = torch.ops.aten.view.default(mul, [-1]); view_1 = None
view_1 = torch.ops.aten.view.default(mul, [-1])
view_2 = torch.ops.aten.view.default(mul, [-1]); mul = None
add = torch.ops.aten.add.Tensor(view_2, 1); view_2 = None
return add""",

View File

@ -3851,31 +3851,6 @@ def forward(self, args_list: List[torch.Tensor]){maybe_return_annotation}:
self.assertIs(next(iter(a.users.keys())), output_node)
m.graph.lint()
def test_delete_unused_values(self):
from torch.fx.experimental.proxy_tensor import make_fx
# disable mutable checking temporarily
orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations
torch.fx.proxy.TracerBase.check_mutable_operations = False
def fn(a, b, c, d):
x = a + b
y = c + d
y.copy_(x)
x = torch.relu(x)
return x
a, b, c, d = (torch.randn(2, 4, requires_grad=False) for _ in range(4))
fx_fn = make_fx(fn)(a, b, c, d)
print(fx_fn)
fx_fn.graph.eliminate_dead_code()
py_code = fx_fn.recompile()
self.assertTrue("copy_ = torch.ops.aten.copy_.default" in py_code.src)
self.assertTrue("copy_ = None" in py_code.src)
# recorver mutable checking flag
torch.fx.proxy.TracerBase.check_mutable_operations = orig_tracer_mutable_flag
def run_getitem_target():
from torch.fx._symbolic_trace import _wrapped_methods_to_patch

View File

@ -31,7 +31,7 @@ class TestReinplacePass(TestCase):
def forward(self, x_1):
clone = torch.ops.aten.clone.default(x_1); x_1 = None
add = torch.ops.aten.add_.Tensor(clone, 1); add = None
add = torch.ops.aten.add_.Tensor(clone, 1)
return clone
""")
@ -58,8 +58,8 @@ def forward(self, x_1):
def forward(self, x_1):
clone = torch.ops.aten.clone.default(x_1); x_1 = None
view = torch.ops.aten.view.default(clone, [-1])
add = torch.ops.aten.add.Tensor(clone, 1); clone = add = None
add_1 = torch.ops.aten.add_.Tensor(view, 1); add_1 = None
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
add_1 = torch.ops.aten.add_.Tensor(view, 1)
return view
""")
@ -144,20 +144,20 @@ def forward(self, a__1):
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
view = torch.ops.aten.view.default(clone, [-1]); view = None
view = torch.ops.aten.view.default(clone, [-1])
view_1 = torch.ops.aten.view.default(clone, [-1])
select = torch.ops.aten.select.int(view_1, 0, 0); view_1 = None
view_2 = torch.ops.aten.view.default(select, [-1]); select = None
add = torch.ops.aten.add_.Tensor(view_2, 1); add = None
add = torch.ops.aten.add_.Tensor(view_2, 1)
view_3 = torch.ops.aten.view.default(clone, [-1]); clone = None
select_1 = torch.ops.aten.select.int(view_3, 0, 0); select_1 = None
view_4 = torch.ops.aten.view.default(view_2, []); view_2 = view_4 = None
select_1 = torch.ops.aten.select.int(view_3, 0, 0)
view_4 = torch.ops.aten.view.default(view_2, []); view_2 = None
view_5 = torch.ops.aten.view.default(view_3, [4]); view_3 = None
view_6 = torch.ops.aten.view.default(view_5, [-1])
select_2 = torch.ops.aten.select.int(view_6, 0, 0); view_6 = None
view_7 = torch.ops.aten.view.default(select_2, [-1]); select_2 = view_7 = None
view_7 = torch.ops.aten.view.default(select_2, [-1]); select_2 = None
view_8 = torch.ops.aten.view.default(view_5, [-1])
add_1 = torch.ops.aten.add_.Tensor(view_5, view_8); view_8 = add_1 = None
add_1 = torch.ops.aten.add_.Tensor(view_5, view_8); view_8 = None
return view_5
""")
@ -187,12 +187,12 @@ def forward(self, a__1):
slice_1 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select = torch.ops.aten.select.int(slice_1, 1, 1); slice_1 = None
select_1 = torch.ops.aten.select.int(select, 0, 1); select = None
add = torch.ops.aten.add_.Tensor(select_1, 1); select_1 = add = None
add = torch.ops.aten.add_.Tensor(select_1, 1); select_1 = None
slice_2 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select_2 = torch.ops.aten.select.int(slice_2, 1, 1); slice_2 = select_2 = None
select_2 = torch.ops.aten.select.int(slice_2, 1, 1); slice_2 = None
slice_3 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select_3 = torch.ops.aten.select.int(slice_3, 1, 1); slice_3 = None
select_4 = torch.ops.aten.select.int(select_3, 0, 1); select_3 = select_4 = None
select_4 = torch.ops.aten.select.int(select_3, 0, 1); select_3 = None
return clone
""")
@ -227,7 +227,7 @@ def forward(self, a__1):
slice_1 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select = torch.ops.aten.select.int(slice_1, 1, 1); slice_1 = None
select_1 = torch.ops.aten.select.int(select, 0, 1); select = None
add = torch.ops.aten.add_.Tensor(select_1, 1); select_1 = add = None
add = torch.ops.aten.add_.Tensor(select_1, 1); select_1 = None
as_strided = torch.ops.aten.as_strided.default(clone, [4], [4], 1); clone = None
return as_strided
""")
@ -266,7 +266,7 @@ def forward(self, a__1):
add = torch.ops.aten.add.Tensor(select_1, 1); select_1 = None
as_strided = torch.ops.aten.as_strided.default(clone, [4], [4], 1); clone = None
select_int = torch.ops.aten.select.int(as_strided, 0, 0)
copy__default = torch.ops.aten.copy_.default(select_int, add); select_int = add = copy__default = None
copy__default = torch.ops.aten.copy_.default(select_int, add); select_int = add = None
return as_strided
""") # noqa: B950
@ -299,7 +299,7 @@ def forward(self, a__1):
add = torch.ops.aten.add.Tensor(select_1, 1); select_1 = None
as_strided = torch.ops.aten.as_strided.default(clone, [4], [4], 0); clone = None
select_int = torch.ops.aten.select.int(as_strided, 0, 1)
copy__default = torch.ops.aten.copy_.default(select_int, add); select_int = add = copy__default = None
copy__default = torch.ops.aten.copy_.default(select_int, add); select_int = add = None
return as_strided
""") # noqa: B950
@ -326,7 +326,7 @@ def forward(self, a__1):
def forward(self):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal, 1); diagonal = add = None
add = torch.ops.aten.add_.Tensor(diagonal, 1); diagonal = None
return [zeros]
""")
@ -351,10 +351,10 @@ def forward(self):
ones = torch.ops.aten.ones.default([4, 2, 4], device = device(type='cpu'), pin_memory = False)
slice_1 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807)
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 2, 9223372036854775807); slice_1 = None
copy = torch.ops.aten.copy_.default(slice_2, ones); slice_2 = ones = copy = None
slice_3 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807); slice_3 = None
copy = torch.ops.aten.copy_.default(slice_2, ones); slice_2 = ones = None
slice_3 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807)
slice_4 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807)
slice_5 = torch.ops.aten.slice.Tensor(slice_4, 1, 2, 9223372036854775807); slice_4 = slice_5 = None
slice_5 = torch.ops.aten.slice.Tensor(slice_4, 1, 2, 9223372036854775807); slice_4 = None
return zeros
""")

View File

@ -1008,7 +1008,7 @@ def forward(self, x_1, y_1):
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
resize_ = torch.ops.aten.resize_.default(x_1, [sym_size_int]); x_1 = sym_size_int = resize_ = None
resize_ = torch.ops.aten.resize_.default(x_1, [sym_size_int]); x_1 = sym_size_int = None
return None""")
def test_broadcast_shapes(self):
@ -1303,7 +1303,7 @@ def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
scalar_tensor = torch.ops.aten.scalar_tensor.default(sym_size_int, dtype = torch.float32, layout = torch.strided, device = device(type='cpu')); sym_size_int = None
select = torch.ops.aten.select.int(x_1, 0, 0)
copy_ = torch.ops.aten.copy_.default(select, scalar_tensor); select = scalar_tensor = copy_ = None
copy_ = torch.ops.aten.copy_.default(select, scalar_tensor); select = scalar_tensor = None
return x_1""" # noqa: B950
)
@ -1321,7 +1321,7 @@ def forward(self, gravity_1, mask_1):
index = torch.ops.aten.index.Tensor(select, [mask_1]); select = None
mul = torch.ops.aten.mul.Tensor(index, -1); index = None
select_1 = torch.ops.aten.select.int(gravity_1, 1, 0); gravity_1 = None
index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul); select_1 = mask_1 = mul = index_put_ = None
index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul); select_1 = mask_1 = mul = None
return None""")
def test_reflect_r_over_x(self):
@ -1345,7 +1345,7 @@ def forward(self, crop_camera_1, mask_1):
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
select = torch.ops.aten.select.int(eye, 0, 0)
select_1 = torch.ops.aten.select.int(select, 0, 0); select = None
copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy); select_1 = lift_fresh_copy = copy_ = None
copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy); select_1 = lift_fresh_copy = None
sym_size_int = torch.ops.aten.sym_size.int(index, 0)
expand = torch.ops.aten.expand.default(eye, [sym_size_int, 3, 3])
view = torch.ops.aten.view.default(expand, [sym_size_int, 3, 3]); expand = None
@ -1359,7 +1359,7 @@ def forward(self, crop_camera_1, mask_1):
view_3 = torch.ops.aten.view.default(view_2, [mul, 3]); view_2 = mul = None
mm = torch.ops.aten.mm.default(view_3, eye); view_3 = eye = None
view_4 = torch.ops.aten.view.default(mm, [sym_size_int, 3, 3]); mm = sym_size_int = None
index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], view_4); crop_camera_1 = mask_1 = view_4 = index_put_ = None
index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], view_4); crop_camera_1 = mask_1 = view_4 = None
return None""") # noqa: B950
def test_unbacked_slice(self):
@ -1412,7 +1412,7 @@ def forward(self, images_1, handedness_1, valid_1):
eq = torch.ops.aten.eq.Scalar(index_1, 1); index_1 = None
index_2 = torch.ops.aten.index.Tensor(index, [eq])
flip = torch.ops.aten.flip.default(index_2, [-1]); index_2 = None
index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip); index = eq = flip = index_put_ = None
index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip); index = eq = flip = None
return None""")
def test_neg_shape(self):
@ -1481,7 +1481,7 @@ def forward(self, x_1, y_1):
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = zeros = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
add = torch.ops.aten.add.Tensor(y_1, 2); y_1 = None
return add""") # noqa: B950
@ -1566,9 +1566,9 @@ def forward(self, lengths_1, values_1):
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(select_1); select_1 = None
select_2 = torch.ops.aten.select.int(lengths_1, 0, 2); lengths_1 = None
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(select_2); select_2 = None
sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense); sym_constrain_range_for_size = None
sym_constrain_range_for_size_1 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_1); sym_constrain_range_for_size_1 = None
sym_constrain_range_for_size_2 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_2); sym_constrain_range_for_size_2 = None
sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense)
sym_constrain_range_for_size_1 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_1)
sym_constrain_range_for_size_2 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_2)
split_with_sizes = torch.ops.aten.split_with_sizes.default(values_1, [_local_scalar_dense, _local_scalar_dense_1, _local_scalar_dense_2]); values_1 = _local_scalar_dense = _local_scalar_dense_1 = _local_scalar_dense_2 = None
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]

View File

@ -528,13 +528,6 @@ class CodeGen:
body.append('\n')
return
nodes_to_delete = user_to_last_uses.get(user, [])
if len(user.users.keys()) == 0:
# This node is not used by any others. however it's also not
# removed by DCE since side-effect. We want to free it's outputs
# right after its execution done to save memory.
nodes_to_delete.append(user)
if len(nodes_to_delete):
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
body.append(f'; {dim(to_delete_str)}\n')