mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
## Bug description When pending args that are potentially to be lift [here](58f346c874/torch/_dynamo/output_graph.py (L1866)) having same base name, like `contiguous` and `contiguous_1`, the call into [create_graph_input](58f346c874/torch/_dynamo/output_graph.py (L2081)) can finally create a name ([here](58f346c874/torch/fx/graph.py (L1008))) that overwrite args to lift. And thus causing a wrong output of graph. ## Reproducing Below is an reproduceable example, ```python import logging from typing import List import torch from functorch.compile import aot_module_simplified, make_boxed_func @torch.library.custom_op("mylib::somefunc_forward", mutates_args=()) def somefunc_forward( input_: torch.Tensor, weight: torch.Tensor, shape: List[int], ) -> torch.Tensor: return torch.ones_like(input_) @somefunc_forward.register_fake def _(input_, shape, weight): return torch.empty_like(input_) @torch.library.custom_op("mylib::somefunc_backward", mutates_args=()) def somefunc_backward( grad_output: torch.Tensor, input_: torch.Tensor, weight: torch.Tensor, shape: List[int], ) -> torch.Tensor: print(f"backward.{grad_output.shape=}") print(f"backward.{input_.shape=}") print(f"backward.{weight.shape=}") print(f"backward.{shape=}") assert list(weight.shape) == shape return torch.ones_like(weight) @somefunc_backward.register_fake def _(grad_output, input_, weight, shape): return torch.empty_like(weight) def a_func(grad_output, input_, weight_, shape): return torch.ones_like(input_.sum() * weight_) class SomeFunc(torch.autograd.Function): @staticmethod def forward(ctx, input, weight, normalized_shape): ctx.normalized_shape = normalized_shape input_ = input.contiguous() weight_ = weight.contiguous() output = somefunc_forward(input_, weight_, ctx.normalized_shape) ctx.save_for_backward(input_, weight_) return output @staticmethod def backward(ctx, grad_output): input_, weight_ = ctx.saved_tensors # grad_weight = a_func(grad_output, input_, weight_, ctx.normalized_shape) grad_weight = somefunc_backward( grad_output.contiguous(), input_, weight_, ctx.normalized_shape, ) return None, grad_weight, None class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.weight = torch.nn.Parameter(torch.ones(7)) def forward(self, x): return SomeFunc.apply(x, self.weight, [7]) model = MyModel() torch._logging.set_logs(dynamo=logging.DEBUG, aot=logging.DEBUG, graph_code=True) def aot_print_backend(gm, sample_inputs): # Forward compiler capture def fw(gm, sample_inputs): print(f"----- fw") gm.print_readable() return make_boxed_func(gm.forward) # Backward compiler capture def bw(gm, sample_inputs): print(f"----- bw") gm.print_readable() return make_boxed_func(gm.forward) # Call AOTAutograd gm_forward = aot_module_simplified( gm, sample_inputs, fw_compiler=fw, bw_compiler=bw ) return gm_forward model = torch.compile( model, backend=aot_print_backend, dynamic=False, ) out = model(torch.rand((128, 4, 7))) out.mean().backward() ``` I can see log that showing calling into create_graph_input like ```log V0629 02:08:46.839914 8200981504 torch/_dynamo/output_graph.py:2042] [0/0] create_graph_input contiguous (none) V0629 02:08:46.839998 8200981504 torch/_dynamo/output_graph.py:2042] [0/0] create_graph_input contiguous_1 (none) ``` And the backward graph generate will be like ```log class GraphModule(torch.nn.Module): def forward(self, function_ctx, somefunc_forward_default: "f32[128, 4, 7]", contiguous: "f32[128, 4, 7]", contiguous_1: "f32[7]"): contiguous_1 = contiguous contiguous_2 = contiguous_1 # No stacktrace found for following nodes _set_grad_enabled = torch._C._set_grad_enabled(False) # File: /Users/bytedance/testtorch/test_custom_op_bug.py:61 in backward, code: grad_output.contiguous(), contiguous: "f32[128, 4, 7]" = somefunc_forward_default.contiguous(); somefunc_forward_default = None # File: /opt/tiger/pytorch/torch/_library/custom_ops.py:506 in __call__, code: return self._opoverload(*args, **kwargs) somefunc_backward_default: "f32[7]" = torch.ops.mylib.somefunc_backward.default(contiguous, contiguous_1, contiguous_2, [7]); contiguous = contiguous_1 = contiguous_2 = None # No stacktrace found for following nodes _set_grad_enabled_1 = torch._C._set_grad_enabled(True) return (None, somefunc_backward_default) ``` The original code of `somefunc_backward` takes a input list of `grad_output`, `input_`, `weight` and `shape`, where `weight` should be shape of `torch.Size([7])`. However, in the graph, `contiguous1` and `contiguous_2` are assigned with `contiguous`, this leads to assertion failure I added in `somefunc_backward`. ## Environment ```log Collecting environment information... PyTorch version: 2.5.0a0+git0b7e8df Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 14.5 (arm64) GCC version: Could not collect Clang version: 15.0.0 (clang-1500.3.9.4) CMake version: version 3.26.4 Libc version: N/A Python version: 3.9.19 (main, May 6 2024, 14:39:30) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-14.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M3 Pro Versions of relevant libraries: [pip3] numpy==2.0.0 [pip3] optree==0.11.0 [pip3] torch==2.5.0a0+git0b7e8df [pip3] torchgraph==0.0.1 [conda] numpy 2.0.0 pypi_0 pypi [conda] optree 0.11.0 pypi_0 pypi [conda] torch 2.5.0a0+git0b7e8df dev_0 <develop> [conda] torchgraph 0.0.1 dev_0 <develop> ``` ## How to fix? I put a naive fix that add the potential args to lift into the used_names. This visits private variables, will fix that if this issue makes sense to you. @zou3519 @oulgen Co-authored-by: rzou <zou3519@gmail.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/129817 Approved by: https://github.com/zou3519
1269 lines
39 KiB
Python
1269 lines
39 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
# flake8: noqa: B950
|
|
import copy
|
|
import math
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List
|
|
|
|
import torch
|
|
|
|
import torch._dynamo.test_case
|
|
import torch._dynamo.testing
|
|
import torch._dynamo.utils
|
|
from functorch.compile import aot_module_simplified
|
|
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
|
|
|
|
if HAS_CUDA:
|
|
import triton
|
|
|
|
from torch.testing._internal.triton_utils import add_kernel
|
|
|
|
|
|
class CustomFunc1(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, foo):
|
|
return foo + foo
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return grad_output
|
|
|
|
|
|
class CustomFunc3(torch.autograd.Function):
|
|
# Test there is graph break in forward function
|
|
@staticmethod
|
|
def forward(ctx, foo):
|
|
result = foo + foo
|
|
torch._dynamo.graph_break()
|
|
result = result + foo
|
|
ctx.save_for_backward(result)
|
|
return result
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
(result,) = ctx.saved_tensors
|
|
return grad_output * math.sqrt(result.numel())
|
|
|
|
|
|
class Module1(torch.nn.Module):
|
|
def forward(self, foo):
|
|
return CustomFunc1().apply(foo)
|
|
|
|
|
|
class Module2(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fn = CustomFunc1.apply
|
|
|
|
def forward(self, foo):
|
|
return self.fn(foo)
|
|
|
|
|
|
class Module3(torch.nn.Module):
|
|
def forward(self, foo):
|
|
return CustomFunc1().apply(foo)
|
|
|
|
|
|
class Module4(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fn = CustomFunc1.apply
|
|
|
|
def forward(self, foo):
|
|
return self.fn(foo)
|
|
|
|
|
|
class Module5(torch.nn.Module):
|
|
def forward(self, foo):
|
|
return CustomFunc3().apply(foo)
|
|
|
|
|
|
class Module6(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fn = CustomFunc3.apply
|
|
|
|
def forward(self, foo):
|
|
return self.fn(foo)
|
|
|
|
|
|
class LinearFunction(torch.autograd.Function):
|
|
# Note that forward, setup_context, and backward are @staticmethods
|
|
@staticmethod
|
|
def forward(input, weight, bias):
|
|
output = input.mm(weight.t())
|
|
if bias is not None:
|
|
output += bias.unsqueeze(0).expand_as(output)
|
|
return output
|
|
|
|
@staticmethod
|
|
# inputs is a Tuple of all of the inputs passed to forward.
|
|
# output is the output of the forward().
|
|
def setup_context(ctx, inputs, output):
|
|
input, weight, bias = inputs
|
|
ctx.save_for_backward(input, weight, bias)
|
|
|
|
# This function has only a single output, so it gets only one gradient
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input, weight, bias = ctx.saved_tensors
|
|
grad_input = grad_weight = grad_bias = None
|
|
if ctx.needs_input_grad[0]:
|
|
grad_input = grad_output.mm(weight)
|
|
if ctx.needs_input_grad[1]:
|
|
grad_weight = grad_output.t().mm(input)
|
|
if bias is not None and ctx.needs_input_grad[2]:
|
|
grad_bias = grad_output.sum(0)
|
|
|
|
return grad_input, grad_weight, grad_bias
|
|
|
|
|
|
class ModuleLinear(torch.nn.Module):
|
|
def forward(self, input, weight, bias=None):
|
|
return LinearFunction.apply(input, weight, bias)
|
|
|
|
|
|
class MaterializingGradFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.set_materialize_grads(False)
|
|
return x.clone(), x.clone()
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out1, grad_out2):
|
|
return grad_out1, grad_out2
|
|
|
|
|
|
class MaterializingGradModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return MaterializingGradFunction.apply(x)
|
|
|
|
|
|
class CustomFuncBwdPrintGraphBreak(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, foo):
|
|
return torch.add(foo, foo)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
print("graph break!")
|
|
return grad_output
|
|
|
|
|
|
class CustomFuncBwdPrintModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return CustomFuncBwdPrintGraphBreak.apply(x)
|
|
|
|
|
|
class CustomFuncStrideBwd(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, foo):
|
|
return torch.add(foo, foo)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return grad_output.stride()
|
|
|
|
|
|
class CustomFuncStrideModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return CustomFuncStrideBwd.apply(x)
|
|
|
|
|
|
class CustomFuncSaveForBwd(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, foo):
|
|
result = foo + foo
|
|
result = result + foo
|
|
ctx.save_for_backward(result)
|
|
return result
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
(result,) = ctx.saved_tensors
|
|
return grad_output * math.sqrt(result.numel())
|
|
|
|
|
|
class SaveForBwdModule(torch.nn.Module):
|
|
def forward(self, foo):
|
|
return CustomFuncSaveForBwd().apply(foo)
|
|
|
|
|
|
class ContextSaveAndMark(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
with torch.no_grad():
|
|
ctx.save_for_backward(x)
|
|
ctx.mark_non_differentiable(x)
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return grad_output
|
|
|
|
|
|
class ContextMarkAndSave(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
with torch.no_grad():
|
|
ctx.mark_non_differentiable(x)
|
|
ctx.save_for_backward(x)
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return grad_output
|
|
|
|
|
|
class ModuleWithGradFunc(torch.nn.Module):
|
|
def __init__(self, func):
|
|
super().__init__()
|
|
self.f = func.apply
|
|
|
|
def forward(self, x):
|
|
return self.f(x)
|
|
|
|
|
|
@torch.library.custom_op("_torch_testing::custom_op_forward", mutates_args=())
|
|
def custom_op_forward(
|
|
foo: torch.Tensor,
|
|
bar: torch.Tensor,
|
|
shape: List[int],
|
|
) -> torch.Tensor:
|
|
return torch.ones_like(foo)
|
|
|
|
|
|
@custom_op_forward.register_fake
|
|
def _(foo, bar, weight):
|
|
return torch.empty_like(foo)
|
|
|
|
|
|
@torch.library.custom_op("_torch_testing::custom_op_backward", mutates_args=())
|
|
def custom_op_backward(
|
|
grad_output: torch.Tensor,
|
|
foo: torch.Tensor,
|
|
bar: torch.Tensor,
|
|
shape: List[int],
|
|
) -> torch.Tensor:
|
|
assert list(bar.shape) == shape
|
|
return torch.ones_like(bar)
|
|
|
|
|
|
@custom_op_backward.register_fake
|
|
def _(grad_output, foo, bar, shape):
|
|
return torch.empty_like(bar)
|
|
|
|
|
|
class CustomOpFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, input, weight, normalized_shape):
|
|
ctx.normalized_shape = normalized_shape
|
|
input_ = input.contiguous()
|
|
weight_ = weight.contiguous()
|
|
output = custom_op_forward(input_, weight_, ctx.normalized_shape)
|
|
ctx.save_for_backward(input_, weight_)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input_, weight_ = ctx.saved_tensors
|
|
# grad_weight = a_func(grad_output, input_, weight_, ctx.normalized_shape)
|
|
grad_weight = custom_op_backward(
|
|
grad_output.contiguous(),
|
|
input_,
|
|
weight_,
|
|
ctx.normalized_shape,
|
|
)
|
|
return None, grad_weight, None
|
|
|
|
|
|
class CustomOpModule(torch.nn.Module):
|
|
def __init__(self, shape):
|
|
super().__init__()
|
|
self.shape = shape
|
|
self.weight = torch.nn.Parameter(torch.ones(self.shape))
|
|
|
|
def forward(self, x):
|
|
return CustomOpFunc.apply(x, self.weight, self.shape)
|
|
|
|
|
|
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
|
|
# Sound behaviors, tested for working capture
|
|
def test_autograd_function_equivalence(self):
|
|
for grad in [True, False]:
|
|
for i in range(1, 5):
|
|
torch._dynamo.reset()
|
|
model = globals()[f"Module{i}"]()
|
|
opt_model = torch._dynamo.optimize("eager")(model)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
opt_model(torch.ones(2, 3, requires_grad=grad)),
|
|
torch.tensor([2.0], requires_grad=grad),
|
|
)
|
|
)
|
|
|
|
def test_autograd_function_has_graph_break(self):
|
|
for grad in [True, False]:
|
|
x = torch.randn(10, requires_grad=grad)
|
|
for model in [Module5(), Module6()]:
|
|
torch._dynamo.reset()
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_model = torch._dynamo.optimize(cnts)(model)
|
|
for _ in range(3):
|
|
ref = model(x)
|
|
res = opt_model(x)
|
|
self.assertTrue(torch.allclose(ref, res))
|
|
self.assertEqual(cnts.frame_count, 2)
|
|
|
|
def test_linear_setup_context(self):
|
|
model = ModuleLinear()
|
|
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
|
|
input = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
|
|
weight = torch.randn(3, 2, dtype=torch.double, requires_grad=True)
|
|
eager_result = model(input, weight)
|
|
optim_result = opt_model(input, weight)
|
|
self.assertEqual(optim_result, eager_result)
|
|
|
|
def test_materialize_grad(self):
|
|
model = MaterializingGradModule()
|
|
opt_model = torch._dynamo.optimize("eager")(model)
|
|
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
|
|
optim_result = opt_model(x)
|
|
eager_result = model(x)
|
|
self.assertEqual(optim_result, eager_result)
|
|
|
|
def test_print_in_bwd(self):
|
|
model = CustomFuncBwdPrintModule()
|
|
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
|
|
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
|
|
with self.assertRaisesRegex(torch._dynamo.exc.Unsupported, "builtin: print"):
|
|
opt_model(x)
|
|
|
|
def test_stride_in_bwd(self):
|
|
torch._dynamo.utils.counters.clear()
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
model = CustomFuncStrideModule()
|
|
opt_model = torch.compile(backend=cnt)(model)
|
|
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
|
|
ref = model(x)
|
|
res = opt_model(x)
|
|
|
|
self.assertEqual(ref, res)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
# graph break: Illegal getattr invocation stride in strict mod.
|
|
self.assertEqual(
|
|
list(torch._dynamo.utils.counters["graph_break"].values()), [1]
|
|
)
|
|
|
|
def test_enum_arg(self):
|
|
from enum import Enum
|
|
|
|
class SomeEnum(Enum):
|
|
A = 0
|
|
B = 1
|
|
|
|
class Foo(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, e):
|
|
if e is SomeEnum.A:
|
|
return x.sin()
|
|
else:
|
|
return x.cos()
|
|
|
|
@staticmethod
|
|
def backward(ctx, g):
|
|
return g
|
|
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def f(x, enum):
|
|
output = Foo.apply(
|
|
x,
|
|
enum,
|
|
)
|
|
return output
|
|
|
|
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
|
|
y = f(x, SomeEnum.A)
|
|
self.assertEqual(y, x.sin())
|
|
|
|
def test_save_for_bwd(self):
|
|
model = SaveForBwdModule()
|
|
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
|
|
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
|
|
opt_model(x)
|
|
|
|
def test_allow_in_graph(self):
|
|
torch._dynamo.utils.counters.clear()
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch._dynamo.allow_in_graph
|
|
class AllowInGraphFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
torch._dynamo.graph_break()
|
|
ctx.x0 = x.size(0)
|
|
return x * 2
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
return grad_out * ctx.x0
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def fn(x):
|
|
return AllowInGraphFunc.apply(x)
|
|
|
|
x = torch.rand(2, 3, requires_grad=True)
|
|
result = fn(x)
|
|
|
|
self.assertEqual(result, AllowInGraphFunc.apply(x))
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
def test_once_differentiable(self):
|
|
from torch.autograd.function import once_differentiable
|
|
|
|
torch._dynamo.utils.counters.clear()
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
class ScaleGradient(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
return x
|
|
|
|
@staticmethod
|
|
@once_differentiable
|
|
def backward(ctx, grad):
|
|
return grad * 0.5
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def fn(x):
|
|
return ScaleGradient.apply(x)
|
|
|
|
x = torch.randn(3, requires_grad=True)
|
|
result = fn(x)
|
|
|
|
self.assertEqual(result, ScaleGradient.apply(x))
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
def test_classmethod(self):
|
|
class Shake(torch.autograd.Function):
|
|
@classmethod
|
|
def forward(cls, ctx, foo):
|
|
return foo + foo
|
|
|
|
@classmethod
|
|
def backward(cls, ctx, grad_output):
|
|
return grad_output
|
|
|
|
def f(x):
|
|
return Shake.apply(x)
|
|
|
|
x = torch.randn(4, 4, 4, 4, requires_grad=True)
|
|
opt_m = torch.compile(backend="eager")(f)
|
|
opt_m(x)
|
|
|
|
def test_function_context_save_and_mark(self):
|
|
mod = ModuleWithGradFunc(ContextSaveAndMark)
|
|
args, kwargs = ([torch.rand([1])], {})
|
|
before = mod(*args, **kwargs)
|
|
|
|
torch._dynamo.reset()
|
|
compiled_model = torch._dynamo.optimize("eager")(mod)
|
|
after = compiled_model(*args, **kwargs)
|
|
self.assertEqual(before, after)
|
|
|
|
def test_function_context_mark_and_save(self):
|
|
mod = ModuleWithGradFunc(ContextMarkAndSave)
|
|
args, kwargs = ([torch.rand([1])], {})
|
|
before = mod(*args, **kwargs)
|
|
|
|
torch._dynamo.reset()
|
|
compiled_model = torch._dynamo.optimize("eager")(mod)
|
|
after = compiled_model(*args, **kwargs)
|
|
self.assertEqual(before, after)
|
|
|
|
def test_multi_output(self):
|
|
torch._dynamo.utils.counters.clear()
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
class Foo(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
return x.clone(), x.clone()
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad1, grad2):
|
|
return grad1 + grad2
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def f(x):
|
|
return Foo.apply(x)
|
|
|
|
x = torch.randn(3, requires_grad=True)
|
|
result = f(x)
|
|
|
|
self.assertEqual(result, Foo.apply(x))
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
def test_amp_custom_fwd_bwd(self):
|
|
torch._dynamo.utils.counters.clear()
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
class MyMM(torch.autograd.Function):
|
|
@staticmethod
|
|
@torch.amp.custom_fwd(device_type="cuda")
|
|
def forward(ctx, a, b):
|
|
ctx.save_for_backward(a, b)
|
|
return a.mm(b)
|
|
|
|
@staticmethod
|
|
@torch.amp.custom_bwd(device_type="cuda")
|
|
def backward(ctx, grad):
|
|
a, b = ctx.saved_tensors
|
|
return grad.mm(b.t()), a.t().mm(grad)
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def fn(a, b):
|
|
return MyMM.apply(a, b)
|
|
|
|
a = torch.randn([64, 64], dtype=torch.float32, requires_grad=True)
|
|
grad = a.clone()
|
|
res = fn(a, a)
|
|
res.backward(grad)
|
|
|
|
self.assertEqual(res, MyMM.apply(a, a))
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
def test_user_defined_object_as_input(self):
|
|
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
|
|
|
|
@dataclass
|
|
class Weird:
|
|
x: int
|
|
b: torch.Tensor
|
|
c: torch.Tensor
|
|
|
|
class Foo(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x: torch.Tensor, weird: Weird, z: torch.Tensor):
|
|
ctx.save_for_backward(weird.b, weird.c)
|
|
return weird.b * weird.c * x.clone()
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
b, c = ctx.saved_tensors
|
|
return grad * b * c, None, grad * 2
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def f(x, weird, z):
|
|
return Foo.apply(x, weird, z)
|
|
|
|
x = torch.tensor(2.0, requires_grad=True)
|
|
weird = Weird(1.2, torch.tensor(2.5, requires_grad=True), torch.tensor(3.5))
|
|
z = torch.tensor(3.0, requires_grad=True)
|
|
|
|
result = f(x, weird, z)
|
|
result.sum().backward()
|
|
|
|
self.assertEqual(result, Foo.apply(x, weird, z))
|
|
self.assertEqual(x.grad, 2.5 * 3.5)
|
|
self.assertEqual(z.grad, 2.0)
|
|
self.assertEqual(weird.b.grad, None)
|
|
|
|
# check Dynamo captured graph is correct!
|
|
actual_graph = torch._dynamo.testing.normalize_gm(
|
|
cnt.graphs[0].print_readable(print_output=False)
|
|
)
|
|
self.assertExpectedInline(
|
|
actual_graph,
|
|
"""\
|
|
class GraphModule(torch.nn.Module):
|
|
def forward(self, L_x_: "f32[]", L_z_: "f32[]", L_weird_b: "f32[]", L_weird_c: "f32[]"):
|
|
l_x_ = L_x_
|
|
l_z_ = L_z_
|
|
l_weird_b = L_weird_b
|
|
l_weird_c = L_weird_c
|
|
|
|
function_ctx = torch.autograd.function.FunctionCtx()
|
|
fwd_body_0 = self.fwd_body_0
|
|
bwd_body_0 = self.bwd_body_0
|
|
autograd_function_apply: "f32[]" = torch._functorch.autograd_function.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_z_, l_weird_b, l_weird_c, args_tensor_mask = [True, False, True]); fwd_body_0 = bwd_body_0 = l_x_ = l_z_ = l_weird_b = l_weird_c = None
|
|
return (autograd_function_apply,)
|
|
|
|
class GraphModule(torch.nn.Module):
|
|
def forward(self, ctx, x: "f32[]", z: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
|
|
ctx_1 = ctx
|
|
x_1 = x
|
|
z_1 = z
|
|
l_weird_b_1 = l_weird_b
|
|
l_weird_c_1 = l_weird_c
|
|
|
|
mul: "f32[]" = l_weird_b_1 * l_weird_c_1
|
|
clone: "f32[]" = x_1.clone(); x_1 = None
|
|
mul_1: "f32[]" = mul * clone; mul = clone = None
|
|
return (mul_1, [l_weird_b_1, l_weird_c_1])
|
|
|
|
class GraphModule(torch.nn.Module):
|
|
def forward(self, ctx, grad: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
|
|
ctx_1 = ctx
|
|
grad_1 = grad
|
|
l_weird_b_1 = l_weird_b
|
|
l_weird_c_1 = l_weird_c
|
|
|
|
_set_grad_enabled = torch._C._set_grad_enabled(False)
|
|
|
|
mul: "f32[]" = grad_1 * l_weird_b_1; l_weird_b_1 = None
|
|
mul_1: "f32[]" = mul * l_weird_c_1; mul = l_weird_c_1 = None
|
|
mul_2: "f32[]" = grad_1 * 2; grad_1 = None
|
|
|
|
_set_grad_enabled_1 = torch._C._set_grad_enabled(True)
|
|
return (mul_1, mul_2)
|
|
""",
|
|
)
|
|
|
|
def test_tensor_list_as_input(self):
|
|
class Foo(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, tl):
|
|
ctx.save_for_backward(tl[0], tl[1])
|
|
return x.clone() * (tl[0] + tl[1])
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
tl0, tl1 = ctx.saved_tensors
|
|
return grad * (tl0 + tl1), None
|
|
|
|
@torch.compile(backend="aot_eager", fullgraph=True)
|
|
def f(x, tl):
|
|
return Foo.apply(x, tl)
|
|
|
|
x = torch.tensor(2.0, requires_grad=True)
|
|
tl = [
|
|
torch.tensor(3.0, requires_grad=True),
|
|
torch.tensor(4.0, requires_grad=True),
|
|
]
|
|
|
|
result = f(x, tl)
|
|
result.sum().backward()
|
|
|
|
self.assertEqual(result, Foo.apply(x, tl))
|
|
self.assertEqual(x.grad, 7.0)
|
|
self.assertEqual(tl[0].grad, None)
|
|
self.assertEqual(tl[1].grad, None)
|
|
|
|
def test_multiple_different_non_tensor_inputs(self):
|
|
@dataclass
|
|
class Weird:
|
|
x: int
|
|
b: torch.Tensor
|
|
c: torch.Tensor
|
|
|
|
class Foo(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, weird, z, tl):
|
|
ctx.save_for_backward(weird.b, weird.c, tl[0], tl[1])
|
|
return x.clone() * weird.b * weird.c * tl[0]
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
b, c, tl0, _ = ctx.saved_tensors
|
|
return grad * b * c * tl0, None, grad * 2, None
|
|
|
|
@torch.compile(backend="aot_eager", fullgraph=True)
|
|
def f(x, weird, z, tl):
|
|
return Foo.apply(x, weird, z, tl)
|
|
|
|
x = torch.tensor(2.0, requires_grad=True)
|
|
weird = Weird(
|
|
1.2,
|
|
torch.tensor(2.5, requires_grad=True),
|
|
torch.tensor(3.5, requires_grad=True),
|
|
)
|
|
z = torch.tensor(3.0, requires_grad=True)
|
|
tl = [
|
|
torch.tensor(0.5, requires_grad=True),
|
|
torch.tensor(0.6, requires_grad=True),
|
|
]
|
|
|
|
result = f(x, weird, z, tl)
|
|
result.sum().backward()
|
|
|
|
self.assertEqual(result, Foo.apply(x, weird, z, tl))
|
|
self.assertEqual(x.grad, 2.5 * 3.5 * 0.5)
|
|
self.assertEqual(z.grad, 2.0)
|
|
self.assertEqual(weird.b.grad, None)
|
|
self.assertEqual(weird.c.grad, None)
|
|
self.assertEqual(tl[0].grad, None)
|
|
self.assertEqual(tl[1].grad, None)
|
|
|
|
def test_backward_returns_none_for_tensor_input(self):
|
|
class Foo(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, y):
|
|
ctx.save_for_backward(y)
|
|
return x.clone() * y
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
(y,) = ctx.saved_tensors
|
|
return grad * y, None
|
|
|
|
@torch.compile(backend="aot_eager", fullgraph=True)
|
|
def f(x, y):
|
|
return Foo.apply(x, y)
|
|
|
|
x = torch.tensor(2.0, requires_grad=True)
|
|
y = torch.tensor(3.0, requires_grad=True)
|
|
|
|
result = f(x, y)
|
|
result.sum().backward()
|
|
|
|
self.assertEqual(result, Foo.apply(x, y))
|
|
self.assertEqual(x.grad, 3.0)
|
|
self.assertEqual(y.grad, None)
|
|
|
|
def test_function_with_bound_free_variable(self):
|
|
class LowerBound(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, inputs, bound):
|
|
ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
|
|
return inputs.clamp(min=bound)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
inputs, bound = ctx.saved_tensors
|
|
return (inputs >= bound) * grad_output, None
|
|
|
|
class MyMod(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.gamma = torch.nn.Parameter(torch.rand([4, 128, 32, 32]))
|
|
|
|
def forward(self, x):
|
|
gamma = LowerBound.apply(self.gamma, 1)
|
|
return x + gamma
|
|
|
|
mod = MyMod()
|
|
args, kwargs = ([torch.rand([4, 128, 32, 32])], {})
|
|
before = mod(*args, **kwargs)
|
|
|
|
compiled_model = torch._dynamo.optimize("eager")(mod)
|
|
after = compiled_model(*args, **kwargs)
|
|
self.assertEqual(before, after)
|
|
|
|
# I pulled all of these test cases from test_autograd.py
|
|
# In the future, we should make the Dynamo test suite actually
|
|
# run on test_autograd.py (it's disabled right now) and delete these.
|
|
def test_smoke_from_test_autograd(self):
|
|
class Func(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
out0 = x.clone()
|
|
out1 = x.clone()
|
|
ctx.mark_non_differentiable(out1)
|
|
ctx._materialize_non_diff_grads = False
|
|
return out0, out1
|
|
|
|
@staticmethod
|
|
def backward(ctx, g0, g1):
|
|
assert g1 is None
|
|
return g0
|
|
|
|
def mult1(x):
|
|
return x.prod(dim=-1).prod(dim=-1)
|
|
|
|
class Mult(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
y = mult1(x)
|
|
ctx.save_for_backward(x, y)
|
|
return y
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
x, y = ctx.saved_tensors
|
|
return (grad_output * y)[:, None, None] / x
|
|
|
|
mult2 = Mult.apply
|
|
|
|
class Double(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
y = x**2
|
|
ctx.save_for_backward(x, y)
|
|
return y
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
x, _ = ctx.saved_tensors
|
|
return grad_output * 2 * x
|
|
|
|
# this is equivalent, but uses the output of .forward() in .backward()
|
|
class Double2(Double):
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
x, y = ctx.saved_tensors
|
|
return grad_output * 2 * y / x
|
|
|
|
double = Double.apply
|
|
double2 = Double2.apply
|
|
|
|
class Identity(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, a, b):
|
|
return a, a + b
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_a, grad_b):
|
|
return grad_a + grad_b, grad_b
|
|
|
|
class MyFunc2(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, inp):
|
|
return inp.clone()
|
|
|
|
@staticmethod
|
|
def backward(ctx, gO):
|
|
return torch.tensor(float("nan")).expand(10, 10)
|
|
|
|
def run_fn(a):
|
|
out = MyFunc2.apply(a)
|
|
return out.sum()
|
|
|
|
class MyFn(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, inp):
|
|
return inp.view_as(inp)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
return grad
|
|
|
|
class MyAdder(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, a, b):
|
|
a.add_(b)
|
|
ctx.mark_dirty(a)
|
|
return a
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
return grad, grad
|
|
|
|
class InplaceMul(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
result = x.mul_(2)
|
|
ctx.mark_dirty(result)
|
|
return result
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
pass
|
|
|
|
@staticmethod
|
|
def jvp(ctx, x_t):
|
|
if jvp_err: # noqa: F821
|
|
return x_t
|
|
else:
|
|
return x_t.mul_(2)
|
|
|
|
class MyFn2(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, y):
|
|
return x + y, x
|
|
|
|
@staticmethod
|
|
def vjp(ctx, gO1, gO2):
|
|
return gO1 + gO2, gO1
|
|
|
|
@staticmethod
|
|
def jvp(ctx, x_t, y_t):
|
|
return x_t + y_t, fn(x_t) # noqa: F821
|
|
|
|
class MyFn3(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, inp, inplace):
|
|
view = inp.clone()[:3]
|
|
if inplace:
|
|
view += 2
|
|
return view
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
return grad, None
|
|
|
|
def test():
|
|
a = torch.tensor(1.0, requires_grad=True)
|
|
out = Func.apply(a)[0]
|
|
out.backward()
|
|
|
|
x = torch.ones(2, 4, 4).requires_grad_()
|
|
mult2(x)
|
|
|
|
x = torch.tensor(2).double().requires_grad_()
|
|
double(x)
|
|
double2(x)
|
|
|
|
x = torch.randn(5, 5, requires_grad=True)
|
|
y = torch.randn(5, 5, requires_grad=True)
|
|
q, p = Identity.apply(x, y)
|
|
|
|
a = torch.rand(1, 2)
|
|
b = torch.rand(1, requires_grad=True)
|
|
view_a = MyFn.apply(a)
|
|
|
|
a = torch.ones(2, requires_grad=True)
|
|
b = torch.ones(2, requires_grad=True)
|
|
c = MyAdder.apply(a.clone(), b)
|
|
c.sum().backward()
|
|
|
|
z = torch.tensor(1.0, requires_grad=True)
|
|
x = z.clone()
|
|
y = InplaceMul.apply(x)
|
|
|
|
a = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
|
|
b = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
|
|
c = torch.tensor(1.0, dtype=torch.double)
|
|
d = torch.tensor(1.0, dtype=torch.double)
|
|
MyFn2.apply(a, b)
|
|
MyFn2.apply(c, d)
|
|
|
|
base = torch.rand(10, requires_grad=True)
|
|
foo = MyFn3.apply(base, False)
|
|
|
|
test()
|
|
opt_test = torch._dynamo.optimize("eager")(test)
|
|
opt_test()
|
|
|
|
def test_tensor_subclass_intermediary_input(self):
|
|
class FooTensor(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, data, config, scale):
|
|
self = torch.Tensor._make_wrapper_subclass(
|
|
cls,
|
|
config[0],
|
|
strides=config[1],
|
|
storage_offset=config[2],
|
|
dtype=config[3],
|
|
layout=config[4],
|
|
requires_grad=config[5],
|
|
device=data.device,
|
|
)
|
|
self._data = data
|
|
self._config = config
|
|
self._scale = scale
|
|
return self
|
|
|
|
def __repr__(self):
|
|
return "FooTensor"
|
|
|
|
def __tensor_flatten__(self):
|
|
return ("_data",), (
|
|
self._config,
|
|
self._scale,
|
|
)
|
|
|
|
@staticmethod
|
|
def __tensor_unflatten__(tensors, metadatas, outer_size, outer_stride):
|
|
return FooTensor(tensors["_data"], metadatas[0], metadatas[1])
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args, kwargs=None):
|
|
# handling clone and view is so dynamo fakefication passes, it's not
|
|
# intended to be handling user code
|
|
if func == torch.ops.aten.clone.default:
|
|
return FooTensor(
|
|
args[0]._data.clone(), args[0]._config, args[0]._scale
|
|
)
|
|
elif func == torch.ops.aten.view.default:
|
|
new_data = args[0]._data.view(*args[1:])
|
|
return FooTensor(new_data, args[0]._config, args[0]._scale)
|
|
|
|
raise NotImplementedError
|
|
|
|
class foo_autograd_fn(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
# access some data from `x`, where `x` is a tensor subclass
|
|
x2 = x._data + 1.0
|
|
# create and return a tensor subclass from within a torch.autograd.Function
|
|
x3 = FooTensor(x2, x._config, x._scale)
|
|
return x3._data
|
|
|
|
@staticmethod
|
|
def backward(ctx, g):
|
|
return g
|
|
|
|
x_ref = torch.randn(4, 4).requires_grad_(True)
|
|
x = copy.deepcopy(x_ref)
|
|
scale = torch.tensor(1.0)
|
|
# Weird that this is needed, but not having this breaks a lot of things
|
|
torch._dynamo.allow_in_graph(FooTensor)
|
|
|
|
def foo(x, scale):
|
|
config = (
|
|
x.size(),
|
|
x.stride(),
|
|
x.storage_offset(),
|
|
x.dtype,
|
|
x.layout,
|
|
x.requires_grad,
|
|
)
|
|
x = FooTensor(x, config, scale)
|
|
x = foo_autograd_fn.apply(x)
|
|
return x
|
|
|
|
y_ref = foo(x_ref, scale)
|
|
y_ref.sum().backward()
|
|
|
|
foo_opt = torch.compile(foo, backend="eager")
|
|
y = foo_opt(x, scale)
|
|
y.sum().backward()
|
|
|
|
self.assertEqual(y, y_ref)
|
|
self.assertEqual(x.grad, x_ref.grad)
|
|
|
|
def test_smuggle_symint_issue_111031(self):
|
|
from torch.autograd import Function
|
|
|
|
class Foo(Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.x0 = x.size(0)
|
|
return x * 2
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
return grad_out * ctx.x0
|
|
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch.compile(backend=cnts, fullgraph=True, dynamic=True)
|
|
def foo(x):
|
|
return Foo.apply(x)
|
|
|
|
foo(torch.randn(2, requires_grad=True))
|
|
self.assertEqual(cnts.frame_count, 1)
|
|
|
|
def test_needs_input_grad(self):
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
class NeedsInputGradFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, foo):
|
|
result = foo + foo
|
|
ctx.save_for_backward(result)
|
|
return result
|
|
|
|
@staticmethod
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def backward(ctx, grad_output):
|
|
(result,) = ctx.saved_tensors
|
|
if ctx.needs_input_grad[0]:
|
|
return grad_output * result.sin()
|
|
return None
|
|
|
|
x = torch.randn(10, requires_grad=True)
|
|
NeedsInputGradFunc.apply(x).sum().backward()
|
|
self.assertEqual(x.grad.shape, x.shape)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
self.assertEqual(cnt.op_count, 2)
|
|
|
|
def test_repeated_save_for_backward_calls(self):
|
|
from torch.autograd import Function
|
|
|
|
class Foo(Function):
|
|
@staticmethod
|
|
def forward(ctx, x, y):
|
|
ctx.save_for_backward(x)
|
|
ctx.save_for_backward(x, y)
|
|
return x * y
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
x, y = ctx.saved_tensors
|
|
return grad_out * x, grad_out * y
|
|
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
def foo(x, y):
|
|
return Foo.apply(x, y)
|
|
|
|
x_ref = torch.randn(2, requires_grad=True)
|
|
y_ref = torch.randn(2, requires_grad=True)
|
|
x_test = x_ref.clone().detach().requires_grad_()
|
|
y_test = y_ref.clone().detach().requires_grad_()
|
|
|
|
out_ref = foo(x_ref, y_ref)
|
|
out_ref.sum().backward()
|
|
|
|
out_test = torch.compile(foo, backend=cnts)(x_test, y_test)
|
|
out_test.sum().backward()
|
|
|
|
self.assertEqual(cnts.frame_count, 1)
|
|
self.assertEqual(out_ref, out_test)
|
|
self.assertEqual(x_ref.grad, x_test.grad)
|
|
self.assertEqual(y_ref.grad, y_test.grad)
|
|
|
|
def test_smuggle_tensor_and_complex_structures(self):
|
|
from torch.autograd import Function
|
|
|
|
class Foo(Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.x0 = x
|
|
ctx.x1 = [1, 2, 3]
|
|
return x * 2
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
x0mul = grad_out * ctx.x0
|
|
for i in ctx.x1:
|
|
x0mul = (x0mul * i) + x0mul
|
|
return x0mul
|
|
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch.compile(backend=cnts, fullgraph=True, dynamic=True)
|
|
def foo(x):
|
|
return Foo.apply(x)
|
|
|
|
foo(torch.randn(2, requires_grad=True))
|
|
self.assertEqual(cnts.frame_count, 1)
|
|
|
|
def test_default_values(self):
|
|
from torch.autograd import Function
|
|
|
|
class Foo(Function):
|
|
@staticmethod
|
|
def forward(ctx, x, alpha=0.99):
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
return grad_out
|
|
|
|
@torch.compile
|
|
def foo(x):
|
|
return Foo.apply(x)
|
|
|
|
# Make sure guards for default values do not crash
|
|
foo(torch.randn(2))
|
|
foo(torch.randn(2, requires_grad=True))
|
|
|
|
def test_tuple_arg(self):
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
class TupleArgFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, shape):
|
|
ctx.save_for_backward(torch.randn(shape))
|
|
return x + 1
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
(result,) = ctx.saved_tensors
|
|
return result, None
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True)
|
|
def fn():
|
|
return TupleArgFunc.apply(x, shape)
|
|
|
|
shape = (10, 10)
|
|
x = torch.randn(shape, requires_grad=True)
|
|
out = fn()
|
|
out.sum().backward()
|
|
self.assertEqual(out, x + 1)
|
|
self.assertEqual(x.grad.shape, shape)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
self.assertEqual(cnt.op_count, 2)
|
|
|
|
def test_custom_op(self):
|
|
shape = [7]
|
|
x = torch.rand(128, shape[0])
|
|
model = CustomOpModule(shape)
|
|
out = model(x)
|
|
|
|
def backend(gm, example_inputs):
|
|
return aot_module_simplified(
|
|
gm, example_inputs, fw_compiler=lambda gm, _: gm
|
|
)
|
|
|
|
opt_model = torch.compile(model, backend=backend)
|
|
opt_out = opt_model(x)
|
|
opt_out.mean().backward()
|
|
self.assertEqual(out, opt_out)
|
|
|
|
@requires_cuda
|
|
def test_triton_kernel_basic(self):
|
|
class Add(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, y):
|
|
ctx.save_for_backward(x, y)
|
|
output = torch.zeros_like(x)
|
|
n_elements = output.numel()
|
|
grid = lambda meta: ( # noqa: E731
|
|
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
|
|
)
|
|
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
x, y = ctx.saved_tensors
|
|
return x * grad_output, y * grad_output
|
|
|
|
@torch.compile(fullgraph=True, backend="inductor")
|
|
def f(x, y):
|
|
z = Add.apply(x, y)
|
|
return z
|
|
|
|
x = torch.randn(10, device="cuda", requires_grad=True)
|
|
y = torch.randn(10, device="cuda", requires_grad=True)
|
|
z = f(x, y)
|
|
loss = z.sum()
|
|
loss.backward()
|
|
self.assertEqual(x + y, z)
|
|
|
|
@requires_cuda
|
|
def test_triton_kernel_multiple_out(self):
|
|
class Add(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, y):
|
|
ctx.save_for_backward(x, y)
|
|
ctx.t1 = x
|
|
ctx.t2 = y
|
|
output = torch.zeros_like(x)
|
|
n_elements = output.numel()
|
|
grid = lambda meta: ( # noqa: E731
|
|
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
|
|
)
|
|
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
|
|
return output, x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output, old_x):
|
|
x, y = ctx.saved_tensors
|
|
x1 = ctx.t1
|
|
y1 = ctx.t2
|
|
return old_x * x * x1 * grad_output, y * y1 * grad_output
|
|
|
|
@torch.compile(fullgraph=True, backend="inductor")
|
|
def f(x, y):
|
|
z = Add.apply(x, y)
|
|
return z
|
|
|
|
x = torch.randn(10, device="cuda", requires_grad=True)
|
|
y = torch.randn(10, device="cuda", requires_grad=True)
|
|
z, _ = f(x, y)
|
|
loss = z.sum()
|
|
loss.backward()
|
|
self.assertEqual(x + y, z)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|