[BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)

See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
This commit is contained in:
Xuehai Pan 2024-07-16 11:39:35 +08:00 committed by PyTorch MergeBot
parent 32995dec28
commit c0ed38e644
126 changed files with 163 additions and 33 deletions

View File

@ -2,6 +2,7 @@ import argparse
import json import json
from collections import namedtuple from collections import namedtuple
Result = namedtuple("Result", ["name", "base_time", "diff_time"]) Result = namedtuple("Result", ["name", "base_time", "diff_time"])

View File

@ -1,3 +1,4 @@
from .DummyData import DummyData from .DummyData import DummyData
data_map = {"DummyData": DummyData} data_map = {"DummyData": DummyData}

View File

@ -1,3 +1,4 @@
from .DummyModel import DummyModel from .DummyModel import DummyModel
model_map = {"DummyModel": DummyModel} model_map = {"DummyModel": DummyModel}

View File

@ -1,5 +1,6 @@
from .server import AverageBatchParameterServer, AverageParameterServer from .server import AverageBatchParameterServer, AverageParameterServer
server_map = { server_map = {
"AverageParameterServer": AverageParameterServer, "AverageParameterServer": AverageParameterServer,
"AverageBatchParameterServer": AverageBatchParameterServer, "AverageBatchParameterServer": AverageBatchParameterServer,

View File

@ -6,6 +6,7 @@ from .iteration_steps import basic_iteration_step
from .preprocess_data import preprocess_dummy_data from .preprocess_data import preprocess_dummy_data
from .trainer import DdpTrainer from .trainer import DdpTrainer
criterion_map = {"cel": cel} criterion_map = {"cel": cel}
ddp_hook_map = { ddp_hook_map = {

View File

@ -1,5 +1,6 @@
import torch import torch
RPC_SPARSE = "rpc_sparse" RPC_SPARSE = "rpc_sparse"
RPC_DENSE = "rpc_dense" RPC_DENSE = "rpc_dense"

View File

@ -1,13 +1,13 @@
import time import time
import numpy as np import numpy as np
from agent import AgentBase from agent import AgentBase
from observer import ObserverBase from observer import ObserverBase
import torch import torch
import torch.distributed.rpc as rpc import torch.distributed.rpc as rpc
COORDINATOR_NAME = "coordinator" COORDINATOR_NAME = "coordinator"
AGENT_NAME = "agent" AGENT_NAME = "agent"
OBSERVER_NAME = "observer{}" OBSERVER_NAME = "observer{}"

View File

@ -1,5 +1,4 @@
import argparse import argparse
import json import json
import os import os
import time import time
@ -9,6 +8,7 @@ from coordinator import CoordinatorBase
import torch.distributed.rpc as rpc import torch.distributed.rpc as rpc
import torch.multiprocessing as mp import torch.multiprocessing as mp
COORDINATOR_NAME = "coordinator" COORDINATOR_NAME = "coordinator"
AGENT_NAME = "agent" AGENT_NAME = "agent"
OBSERVER_NAME = "observer{}" OBSERVER_NAME = "observer{}"

View File

@ -1,8 +1,8 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import argparse import argparse
import os import os
import sys import sys
from typing import Set from typing import Set

View File

@ -30,6 +30,7 @@ from zipfile import ZipFile
import pandas as pd import pandas as pd
import requests import requests
# Note: the public query url targets this rockset lambda: # Note: the public query url targets this rockset lambda:
# https://console.rockset.com/lambdas/details/commons.artifacts # https://console.rockset.com/lambdas/details/commons.artifacts
ARTIFACTS_QUERY_URL = "https://api.usw2a1.rockset.com/v1/public/shared_lambdas/4ca0033e-0117-41f5-b043-59cde19eff35" ARTIFACTS_QUERY_URL = "https://api.usw2a1.rockset.com/v1/public/shared_lambdas/4ca0033e-0117-41f5-b043-59cde19eff35"

View File

@ -6,6 +6,7 @@ import csv
import sys import sys
from collections import defaultdict from collections import defaultdict
assert len(sys.argv) == 3 assert len(sys.argv) == 3
RESULTS = defaultdict(dict) RESULTS = defaultdict(dict)

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
from __future__ import annotations from __future__ import annotations
import abc import abc

View File

@ -15,6 +15,7 @@ from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.fsdp.wrap import ModuleWrapPolicy
try: try:
from .torchbench import setup_torchbench_cwd from .torchbench import setup_torchbench_cwd
except ImportError: except ImportError:

View File

@ -10,6 +10,7 @@ from torch._dynamo.testing import reduce_to_scalar_loss
from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DistributedDataParallel as DDP
from torch.profiler import profile, ProfilerActivity, record_function from torch.profiler import profile, ProfilerActivity, record_function
try: try:
from .common import timed from .common import timed
from .dist_util import apply_fsdp, cleanup, get_model, model_iter_fn, setup from .dist_util import apply_fsdp, cleanup, get_model, model_iter_fn, setup

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import importlib import importlib
import logging import logging
import os import os
@ -7,16 +8,17 @@ import subprocess
import sys import sys
import warnings import warnings
try: try:
from .common import BenchmarkRunner, download_retry_decorator, main, reset_rng_state from .common import BenchmarkRunner, download_retry_decorator, main, reset_rng_state
except ImportError: except ImportError:
from common import BenchmarkRunner, download_retry_decorator, main, reset_rng_state from common import BenchmarkRunner, download_retry_decorator, main, reset_rng_state
import torch import torch
from torch._dynamo.testing import collect_results from torch._dynamo.testing import collect_results
from torch._dynamo.utils import clone_inputs from torch._dynamo.utils import clone_inputs
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
# Enable FX graph caching # Enable FX graph caching

View File

@ -1,12 +1,13 @@
# flake8: noqa # flake8: noqa
import triton import triton
from prettytable import PrettyTable from prettytable import PrettyTable
import torch import torch
import torch._dynamo import torch._dynamo
import torch._inductor.config import torch._inductor.config
# torch._inductor.config.debug = True # torch._inductor.config.debug = True
torch._inductor.config.triton.dense_indexing = True torch._inductor.config.triton.dense_indexing = True
torch.manual_seed(0) torch.manual_seed(0)

View File

@ -2,6 +2,7 @@ import timeit
import torch.fx import torch.fx
N = 100000 N = 100000
K = 1000 K = 1000

View File

@ -1,7 +1,6 @@
from benchmark_helper import time_with_torch_timer from benchmark_helper import time_with_torch_timer
import torch import torch
import torch._dynamo import torch._dynamo
import torch._dynamo.config import torch._dynamo.config
import torch._inductor.config as config import torch._inductor.config as config

View File

@ -2,11 +2,11 @@ import triton
from benchmark_helper import time_with_torch_timer from benchmark_helper import time_with_torch_timer
import torch import torch
import torch._dynamo import torch._dynamo
import torch._dynamo.config import torch._dynamo.config
import torch._inductor.config as config import torch._inductor.config as config
# The flag below controls whether to allow TF32 on matmul. This flag defaults to True. # The flag below controls whether to allow TF32 on matmul. This flag defaults to True.
torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.

View File

@ -1,10 +1,10 @@
from benchmark_helper import time_with_torch_timer from benchmark_helper import time_with_torch_timer
import torch import torch
import torch._dynamo import torch._dynamo
import torch._inductor.config as inductor_config import torch._inductor.config as inductor_config
inductor_config.triton.mm = "triton" inductor_config.triton.mm = "triton"

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import argparse import argparse
import inspect import inspect
import sys import sys
@ -7,13 +8,13 @@ import numpy as np
import tabulate import tabulate
import torch import torch
import torch._inductor import torch._inductor
from torch._dynamo.backends.cudagraphs import cudagraphs_inner from torch._dynamo.backends.cudagraphs import cudagraphs_inner
from torch._dynamo.testing import same from torch._dynamo.testing import same
from torch._inductor.compile_fx import compile_fx from torch._inductor.compile_fx import compile_fx
from torch._inductor.utils import timed from torch._inductor.utils import timed
aten = torch.ops.aten aten = torch.ops.aten
try: try:

View File

@ -12,6 +12,7 @@ from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map from torch.utils._pytree import tree_map
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
OP_INP_DIRECTORY = os.path.join(os.path.dirname(__file__), "operator_inp_logs") OP_INP_DIRECTORY = os.path.join(os.path.dirname(__file__), "operator_inp_logs")

View File

@ -1,10 +1,10 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import click import click
import numpy as np import numpy as np
from operator_inp_utils import OperatorInputsLoader from operator_inp_utils import OperatorInputsLoader
import torch import torch
from torch._dynamo.backends.cudagraphs import cudagraphs_inner from torch._dynamo.backends.cudagraphs import cudagraphs_inner
from torch._dynamo.testing import same from torch._dynamo.testing import same
from torch._inductor.compile_fx import compile_fx from torch._inductor.compile_fx import compile_fx
@ -13,6 +13,7 @@ from torch._inductor.lowering import lowerings
from torch._inductor.utils import gen_gm_and_inputs from torch._inductor.utils import gen_gm_and_inputs
from torch.utils._pytree import tree_map_only from torch.utils._pytree import tree_map_only
aten = torch.ops.aten aten = torch.ops.aten

View File

@ -3,6 +3,7 @@ import os
import re import re
import sys import sys
# This script takes the logs produced by the benchmark scripts (e.g., # This script takes the logs produced by the benchmark scripts (e.g.,
# torchbench.py) and parses it into a CSV file that summarizes what # torchbench.py) and parses it into a CSV file that summarizes what
# is failing and why. It is kept separate from the benchmark script # is failing and why. It is kept separate from the benchmark script

View File

@ -23,7 +23,6 @@ If you want to test float16
""" """
import argparse import argparse
import dataclasses import dataclasses
import functools import functools
@ -44,7 +43,6 @@ from os.path import abspath, exists
from random import randint from random import randint
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from matplotlib import rcParams from matplotlib import rcParams
@ -52,9 +50,9 @@ from scipy.stats import gmean
from tabulate import tabulate from tabulate import tabulate
import torch import torch
import torch._dynamo import torch._dynamo
rcParams.update({"figure.autolayout": True}) rcParams.update({"figure.autolayout": True})
plt.rc("axes", axisbelow=True) plt.rc("axes", axisbelow=True)

View File

@ -2,9 +2,9 @@ import os
import unittest import unittest
from .common import parse_args, run from .common import parse_args, run
from .torchbench import setup_torchbench_cwd, TorchBenchmarkRunner from .torchbench import setup_torchbench_cwd, TorchBenchmarkRunner
try: try:
# fbcode only # fbcode only
from aiplatform.utils.sanitizer_status import is_asan_or_tsan from aiplatform.utils.sanitizer_status import is_asan_or_tsan

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import importlib import importlib
import logging import logging
import os import os
@ -7,16 +8,17 @@ import subprocess
import sys import sys
import warnings import warnings
try: try:
from .common import BenchmarkRunner, download_retry_decorator, main from .common import BenchmarkRunner, download_retry_decorator, main
except ImportError: except ImportError:
from common import BenchmarkRunner, download_retry_decorator, main from common import BenchmarkRunner, download_retry_decorator, main
import torch import torch
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
from torch._dynamo.utils import clone_inputs from torch._dynamo.utils import clone_inputs
# Enable FX graph caching # Enable FX graph caching
if "TORCHINDUCTOR_FX_GRAPH_CACHE" not in os.environ: if "TORCHINDUCTOR_FX_GRAPH_CACHE" not in os.environ:
torch._inductor.config.fx_graph_cache = True torch._inductor.config.fx_graph_cache = True

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import functools import functools
import gc import gc
import importlib import importlib
@ -14,6 +15,7 @@ import yaml
import torch import torch
try: try:
from .common import BenchmarkRunner, main from .common import BenchmarkRunner, main
except ImportError: except ImportError:
@ -22,6 +24,7 @@ except ImportError:
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
from torch._dynamo.utils import clone_inputs from torch._dynamo.utils import clone_inputs
# We are primarily interested in tf32 datatype # We are primarily interested in tf32 datatype
torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True

View File

@ -9,10 +9,10 @@ from datasets import load_dataset, load_metric
from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch import torch
import torch._dynamo import torch._dynamo
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True
# You will download around 84G dataset if you run this end to end training/evaluation example. # You will download around 84G dataset if you run this end to end training/evaluation example.

View File

@ -1,6 +1,7 @@
from .cells import * # noqa: F403 from .cells import * # noqa: F403
from .factory import * # noqa: F403 from .factory import * # noqa: F403
# (output, next_state) = cell(input, state) # (output, next_state) = cell(input, state)
seqLength = 100 seqLength = 100
numLayers = 2 numLayers = 2

View File

@ -1,5 +1,6 @@
import pytest # noqa: F401 import pytest # noqa: F401
default_rnns = [ default_rnns = [
"cudnn", "cudnn",
"aten", "aten",

View File

@ -9,6 +9,7 @@ import torch.nn as nn
from torch import Tensor from torch import Tensor
from torch.nn import Parameter from torch.nn import Parameter
""" """
Some helper classes for writing custom TorchScript LSTMs. Some helper classes for writing custom TorchScript LSTMs.

View File

@ -45,6 +45,7 @@ recurrent_scaleshift.graph_for(x, scale, shift)
import torch import torch
x = torch.tensor([]) x = torch.tensor([])
x.requires_grad = True x.requires_grad = True
x.mean().backward() # no error triggered x.mean().backward() # no error triggered

View File

@ -1,10 +1,11 @@
import argparse import argparse
from pt_wrapper_module import WrapperModule from pt_wrapper_module import WrapperModule
from SimpleAddModule import add_tensors_loop, SimpleAddModule from SimpleAddModule import add_tensors_loop, SimpleAddModule
from utils import benchmark_module, BenchmarkConfig, ModuleConfig, ms_to_us from utils import benchmark_module, BenchmarkConfig, ModuleConfig, ms_to_us
""" Framework overhead benchmark script. """ Framework overhead benchmark script.
Benchmark framework overhead. Benchmark framework overhead.
Currently supported ops: add. Currently supported ops: add.

View File

@ -3,6 +3,7 @@ from collections import namedtuple
from torch.utils import ThroughputBenchmark from torch.utils import ThroughputBenchmark
NUM_LOOP_ITERS = 1000 NUM_LOOP_ITERS = 1000
BenchmarkConfig = namedtuple("BenchmarkConfig", "num_warmup_iters num_iters") BenchmarkConfig = namedtuple("BenchmarkConfig", "num_warmup_iters num_iters")
ModuleConfig = namedtuple("ModuleConfig", "pt_fn c2_op num_params graph_mode") ModuleConfig = namedtuple("ModuleConfig", "pt_fn c2_op num_params graph_mode")

View File

@ -1,5 +1,4 @@
import torchaudio_models as models import torchaudio_models as models
from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights
import torch import torch

View File

@ -6,6 +6,7 @@ from typing import Any, Callable, List, NamedTuple
import torch import torch
from torch.autograd import functional from torch.autograd import functional
try: try:
import functorch as ft import functorch as ft

View File

@ -9,6 +9,7 @@ import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn, Tensor from torch import nn, Tensor
__all__ = ["Wav2Letter"] __all__ = ["Wav2Letter"]

View File

@ -4,10 +4,10 @@ from collections import OrderedDict
import torch import torch
from torch import nn from torch import nn
from torch.jit.annotations import Dict from torch.jit.annotations import Dict
from torch.nn import functional as F from torch.nn import functional as F
try: try:
from scipy.optimize import linear_sum_assignment from scipy.optimize import linear_sum_assignment

View File

@ -2,9 +2,9 @@ from collections import defaultdict
from typing import Callable, Dict, List, Tuple, Union from typing import Callable, Dict, List, Tuple, Union
import torch import torch
from torch import nn, Tensor from torch import nn, Tensor
# Type helpers # Type helpers
InputsType = Union[Tensor, Tuple[Tensor, ...]] InputsType = Union[Tensor, Tuple[Tensor, ...]]
# A Getter takes in a device and returns a callable and the inputs to that callable # A Getter takes in a device and returns a callable and the inputs to that callable

View File

@ -1,12 +1,12 @@
from typing import cast from typing import cast
import torchvision_models as models import torchvision_models as models
from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights
import torch import torch
from torch import Tensor from torch import Tensor
has_functorch = check_for_functorch() has_functorch = check_for_functorch()

View File

@ -1,5 +1,6 @@
import pandas import pandas
df = pandas.read_csv("perf.csv") df = pandas.read_csv("perf.csv")
ops = pandas.unique(df["operator"]) ops = pandas.unique(df["operator"])
@ -11,6 +12,7 @@ pivot_speedups = (pivot_op_shape.T / pivot_op_shape["eager"]).T
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20, 100) plt.rcParams["figure.figsize"] = (20, 100)
fig, axs = plt.subplots(nops) fig, axs = plt.subplots(nops)
plt.subplots_adjust(hspace=0.5) plt.subplots_adjust(hspace=0.5)

View File

@ -7,6 +7,7 @@ import click
import torch import torch
torch.set_num_threads(1) torch.set_num_threads(1)
torch._C._debug_set_fusion_group_inlining(False) torch._C._debug_set_fusion_group_inlining(False)

View File

@ -10,6 +10,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from torch.utils.flop_counter import FlopCounterMode from torch.utils.flop_counter import FlopCounterMode
WARMUP_ITER = 5 WARMUP_ITER = 5
A100_40G_BF16_TFLOPS = 312 A100_40G_BF16_TFLOPS = 312

View File

@ -14,6 +14,7 @@ from quantize import WeightOnlyInt8QuantHandler as LLaMAWeightOnlyInt8QuantHandl
import torch import torch
import torch._inductor.config import torch._inductor.config
torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future

View File

@ -5,6 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
##### Quantization Primitives ###### ##### Quantization Primitives ######

View File

@ -10,6 +10,7 @@ import os
import pandas as pd import pandas as pd
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Parse output files") parser = argparse.ArgumentParser(description="Parse output files")
parser.add_argument("--csv", type=str, help="Path to csv file") parser.add_argument("--csv", type=str, help="Path to csv file")

View File

@ -1,5 +1,4 @@
import argparse import argparse
import asyncio import asyncio
import os.path import os.path
import subprocess import subprocess

View File

@ -8,6 +8,7 @@ from typing import Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union
from worker.main import WorkerTimerArgs from worker.main import WorkerTimerArgs
if TYPE_CHECKING: if TYPE_CHECKING:
# Benchmark utils are only partially strict compliant, so MyPy won't follow # Benchmark utils are only partially strict compliant, so MyPy won't follow
# imports using the public namespace. (Due to an exclusion rule in # imports using the public namespace. (Due to an exclusion rule in

View File

@ -13,6 +13,7 @@ from typing import List, Optional, Tuple, TYPE_CHECKING
import torch import torch
if TYPE_CHECKING: if TYPE_CHECKING:
# See the note in api.py for why this is necessary. # See the note in api.py for why this is necessary.
from torch.utils.benchmark.utils.timer import Language from torch.utils.benchmark.utils.timer import Language

View File

@ -20,6 +20,7 @@ from worker.main import (
WorkerUnpickler, WorkerUnpickler,
) )
if TYPE_CHECKING: if TYPE_CHECKING:
PopenType = subprocess.Popen[bytes] PopenType = subprocess.Popen[bytes]
else: else:

View File

@ -1,4 +1,4 @@
from pt import ( # noqa: F401 # noqa: F401 from pt import ( # noqa: F401
add_test, add_test,
ao_sparsifier_test, ao_sparsifier_test,
as_strided_test, as_strided_test,
@ -31,5 +31,6 @@ from pt import ( # noqa: F401 # noqa: F401
import operator_benchmark as op_bench import operator_benchmark as op_bench
if __name__ == "__main__": if __name__ == "__main__":
op_bench.benchmark_runner.main() op_bench.benchmark_runner.main()

View File

@ -4,5 +4,6 @@ from pt import unary_test # noqa: F401
import operator_benchmark as op_bench import operator_benchmark as op_bench
if __name__ == "__main__": if __name__ == "__main__":
op_bench.benchmark_runner.main() op_bench.benchmark_runner.main()

View File

@ -6,6 +6,7 @@ import timeit
from collections import namedtuple from collections import namedtuple
import benchmark_utils import benchmark_utils
import numpy as np import numpy as np
import torch import torch

View File

@ -1,10 +1,12 @@
import argparse import argparse
import benchmark_core import benchmark_core
import benchmark_utils import benchmark_utils
import torch import torch
"""Performance microbenchmarks's main binary. """Performance microbenchmarks's main binary.
This is the main function for running performance microbenchmark tests. This is the main function for running performance microbenchmark tests.

View File

@ -4,6 +4,7 @@ import numpy as np
import torch import torch
"""Microbenchmarks for Tensor repeat operator. Supports PyTorch.""" """Microbenchmarks for Tensor repeat operator. Supports PyTorch."""
input_shapes = ( input_shapes = (

View File

@ -2,6 +2,7 @@ import operator_benchmark as op_bench
import torch import torch
intraop_bench_configs = op_bench.config_list( intraop_bench_configs = op_bench.config_list(
attrs=[ attrs=[
[8, 16], [8, 16],

View File

@ -2,6 +2,7 @@ import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for element-wise Add operator. Supports both Caffe2/PyTorch.""" """Microbenchmarks for element-wise Add operator. Supports both Caffe2/PyTorch."""
add_short_configs = op_bench.config_list( add_short_configs = op_bench.config_list(

View File

@ -2,4 +2,5 @@
import benchmark_runner # noqa: F401 import benchmark_runner # noqa: F401
from benchmark_pytorch import TorchBenchmarkBase # noqa: F401 from benchmark_pytorch import TorchBenchmarkBase # noqa: F401
from benchmark_test_generator import * # noqa: F401,F403 from benchmark_test_generator import * # noqa: F401,F403
from benchmark_utils import * # noqa: F401,F403 from benchmark_utils import * # noqa: F401,F403

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch.""" """Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""
# Configs for PT add operator # Configs for PT add operator

View File

@ -1,7 +1,7 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
from torch import nn from torch import nn
from torch.ao import pruning from torch.ao import pruning

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch.""" """Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,5 +1,6 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
""" """
Configs shared by multiple benchmarks Configs shared by multiple benchmarks
""" """

View File

@ -1,9 +1,11 @@
from pt import configs from pt import configs
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn as nn import torch.nn as nn
""" """
Microbenchmarks for Conv1d and ConvTranspose1d operators. Microbenchmarks for Conv1d and ConvTranspose1d operators.
""" """

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -2,8 +2,10 @@ import numpy
from pt import configs from pt import configs
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Embedding and EmbeddingBag Operator Benchmark""" """Embedding and EmbeddingBag Operator Benchmark"""

View File

@ -1,8 +1,9 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch
import torch
from torch.testing._internal.common_device_type import get_all_device_types from torch.testing._internal.common_device_type import get_all_device_types
"""Microbenchmark for Fill_ operator.""" """Microbenchmark for Fill_ operator."""
fill_short_configs = op_bench.config_list( fill_short_configs = op_bench.config_list(

View File

@ -1,6 +1,7 @@
import numpy import numpy
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn as nn import torch.nn as nn

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn as nn import torch.nn as nn

View File

@ -1,6 +1,7 @@
import numpy import numpy
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for interpolate operator.""" """Microbenchmarks for interpolate operator."""

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for linear_prepack_fp16_ operator. Supports both Caffe2/PyTorch.""" """Microbenchmarks for linear_prepack_fp16_ operator. Supports both Caffe2/PyTorch."""
# Configs for PT linear_prepack_fp16 operator # Configs for PT linear_prepack_fp16 operator

View File

@ -1,6 +1,7 @@
from pt import configs from pt import configs
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn as nn import torch.nn as nn

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for linear_unpack_fp16_ operator. Supports both Caffe2/PyTorch.""" """Microbenchmarks for linear_unpack_fp16_ operator. Supports both Caffe2/PyTorch."""
# Configs for PT linear_unpack_fp16 operator # Configs for PT linear_unpack_fp16 operator

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for MatMul operator""" """Microbenchmarks for MatMul operator"""
# Configs for PT Matmul operator # Configs for PT Matmul operator

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
""" """
Microbenchmarks for batch matrix mult with einsum and torch.bmm. Microbenchmarks for batch matrix mult with einsum and torch.bmm.
""" """

View File

@ -1,7 +1,9 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.nn as nn import torch.nn as nn
""" """
Microbenchmarks for MaxPool1d and AvgPool1d operators. Microbenchmarks for MaxPool1d and AvgPool1d operators.
""" """

View File

@ -1,7 +1,9 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.ao.nn.quantized.functional as qF import torch.ao.nn.quantized.functional as qF
r"""Microbenchmarks for the quantized activations.""" r"""Microbenchmarks for the quantized activations."""
qactivation_long_configs = op_bench.cross_product_configs( qactivation_long_configs = op_bench.cross_product_configs(

View File

@ -1,7 +1,9 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
from torch._ops import ops from torch._ops import ops
qarithmetic_binary_configs = op_bench.cross_product_configs( qarithmetic_binary_configs = op_bench.cross_product_configs(
N=(2, 8, 64, 512), N=(2, 8, 64, 512),
dtype=(torch.quint8, torch.qint8, torch.qint32), dtype=(torch.quint8, torch.qint8, torch.qint32),

View File

@ -2,10 +2,12 @@ import numpy
from pt import configs from pt import configs
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.ao.nn.qat as nnqat import torch.ao.nn.qat as nnqat
from torch.ao.quantization import default_embedding_qat_qconfig from torch.ao.quantization import default_embedding_qat_qconfig
""" """
Microbenchmarks for QAT Embedding + EmbeddingBag operators. Microbenchmarks for QAT Embedding + EmbeddingBag operators.
""" """

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
qcomparators_configs = op_bench.cross_product_configs( qcomparators_configs = op_bench.cross_product_configs(
N=(8, 64), N=(8, 64),
dtype=(torch.quint8, torch.qint8, torch.qint32), dtype=(torch.quint8, torch.qint8, torch.qint32),

View File

@ -1,9 +1,11 @@
from pt import configs from pt import configs
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.ao.nn.quantized as nnq import torch.ao.nn.quantized as nnq
""" """
Microbenchmarks for qConv operators. Microbenchmarks for qConv operators.
""" """

View File

@ -3,10 +3,11 @@ from typing import Optional
import numpy as np import numpy as np
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch
import torch
from torch.testing._internal.common_quantization import lengths_to_offsets from torch.testing._internal.common_quantization import lengths_to_offsets
torch.ops.load_library("//caffe2/torch/fb/sparsenn:sparsenn_operators") torch.ops.load_library("//caffe2/torch/fb/sparsenn:sparsenn_operators")

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
embeddingbag_conversion_short_configs = op_bench.cross_product_configs( embeddingbag_conversion_short_configs = op_bench.cross_product_configs(
num_embeddings=(80,), embedding_dim=(128, 256, 512), tags=("short",) num_embeddings=(80,), embedding_dim=(128, 256, 512), tags=("short",)
) )

View File

@ -2,9 +2,11 @@ import numpy
from pt import configs from pt import configs
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
import torch.ao.nn.quantized as nnq import torch.ao.nn.quantized as nnq
""" """
Microbenchmarks for qEmbeddingBag operators. Microbenchmarks for qEmbeddingBag operators.
""" """

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

View File

@ -1,6 +1,8 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch
"""Microbenchmarks for the quantized interpolate op. """Microbenchmarks for the quantized interpolate op.
Note: We are not benchmarking `upsample` as it is being deprecated, and calls Note: We are not benchmarking `upsample` as it is being deprecated, and calls

View File

@ -1,4 +1,5 @@
import operator_benchmark as op_bench import operator_benchmark as op_bench
import torch import torch

Some files were not shown because too many files have changed in this diff Show More