mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
152 lines
4.2 KiB
Python
152 lines
4.2 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""
|
|
|
|
# Configs for PT add operator
|
|
add_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128], N=[32, 64], K=[256, 512], device=["cpu", "cuda"], tags=["long"]
|
|
)
|
|
|
|
|
|
add_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
class AddBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device):
|
|
self.inputs = {
|
|
"input_one": torch.rand(
|
|
M, N, K, device=device, requires_grad=self.auto_set()
|
|
),
|
|
"input_two": torch.rand(
|
|
M, N, K, device=device, requires_grad=self.auto_set()
|
|
),
|
|
}
|
|
self.set_module_name("add")
|
|
|
|
def forward(self, input_one, input_two):
|
|
return torch.add(input_one, input_two)
|
|
|
|
|
|
# The generated test names based on add_short_configs will be in the following pattern:
|
|
# add_M8_N16_K32_devicecpu
|
|
# add_M8_N16_K32_devicecpu_bwdall
|
|
# add_M8_N16_K32_devicecpu_bwd1
|
|
# add_M8_N16_K32_devicecpu_bwd2
|
|
# ...
|
|
# Those names can be used to filter tests.
|
|
|
|
op_bench.generate_pt_test(add_long_configs + add_short_configs, AddBenchmark)
|
|
op_bench.generate_pt_gradient_test(add_long_configs + add_short_configs, AddBenchmark)
|
|
|
|
|
|
"""Mircobenchmark for addmm operator."""
|
|
|
|
|
|
class AddmmBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device):
|
|
self.inputs = {
|
|
"input_one": torch.rand(M, K, device=device, requires_grad=self.auto_set()),
|
|
"mat1": torch.rand(M, N, device=device, requires_grad=self.auto_set()),
|
|
"mat2": torch.rand(N, K, device=device, requires_grad=self.auto_set()),
|
|
}
|
|
self.set_module_name("addmm")
|
|
|
|
def forward(self, input_one, mat1, mat2):
|
|
return torch.addmm(input_one, mat1, mat2)
|
|
|
|
|
|
op_bench.generate_pt_test(add_long_configs + add_short_configs, AddmmBenchmark)
|
|
op_bench.generate_pt_gradient_test(add_long_configs + add_short_configs, AddmmBenchmark)
|
|
|
|
|
|
"""Mircobenchmark for addr operator."""
|
|
|
|
|
|
class AddrBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, device, dtype):
|
|
self.inputs = {
|
|
"input_one": torch.rand(
|
|
(M, N), device=device, requires_grad=self.auto_set(), dtype=dtype
|
|
),
|
|
"vec1": torch.rand(
|
|
(M,), device=device, requires_grad=self.auto_set(), dtype=dtype
|
|
),
|
|
"vec2": torch.rand(
|
|
(N,), device=device, requires_grad=self.auto_set(), dtype=dtype
|
|
),
|
|
}
|
|
self.set_module_name("addr")
|
|
|
|
def forward(self, input_one, vec1, vec2):
|
|
return torch.addr(input_one, vec1, vec2)
|
|
|
|
|
|
addr_configs = op_bench.cross_product_configs(
|
|
M=[8, 256],
|
|
N=[256, 16],
|
|
device=["cpu", "cuda"],
|
|
dtype=[torch.double, torch.half],
|
|
tags=["addr"],
|
|
)
|
|
|
|
op_bench.generate_pt_test(addr_configs, AddrBenchmark)
|
|
op_bench.generate_pt_gradient_test(addr_configs, AddrBenchmark)
|
|
|
|
|
|
"""Mircobenchmark for addbmm operator."""
|
|
|
|
|
|
class AddbmmBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, B, M, N, K, device):
|
|
self.inputs = {
|
|
"input_one": torch.rand(
|
|
(M, N), device=device, requires_grad=self.auto_set()
|
|
),
|
|
"batch1": torch.rand(
|
|
(B, M, K), device=device, requires_grad=self.auto_set()
|
|
),
|
|
"batch2": torch.rand(
|
|
(
|
|
B,
|
|
K,
|
|
N,
|
|
),
|
|
device=device,
|
|
requires_grad=self.auto_set(),
|
|
),
|
|
}
|
|
self.set_module_name("addbmm")
|
|
|
|
def forward(self, input_one, batch1, batch2):
|
|
return torch.addbmm(input_one, batch1, batch2)
|
|
|
|
|
|
addbmm_configs = op_bench.cross_product_configs(
|
|
B=[2, 100],
|
|
M=[8, 256],
|
|
N=[256, 16],
|
|
K=[15, 16],
|
|
device=["cpu", "cuda"],
|
|
tags=["addbmm"],
|
|
)
|
|
|
|
op_bench.generate_pt_test(addbmm_configs, AddbmmBenchmark)
|
|
op_bench.generate_pt_gradient_test(addbmm_configs, AddbmmBenchmark)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|