pytorch/benchmarks/operator_benchmark/pt/qarithmetic_test.py
Xuehai Pan c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00

89 lines
2.5 KiB
Python

import operator_benchmark as op_bench
import torch
from torch._ops import ops
qarithmetic_binary_configs = op_bench.cross_product_configs(
N=(2, 8, 64, 512),
dtype=(torch.quint8, torch.qint8, torch.qint32),
contig=(False, True),
tags=("short",),
)
qarithmetic_binary_ops = op_bench.op_list(
attrs=(
("add", ops.quantized.add),
("add_relu", ops.quantized.add_relu),
("mul", ops.quantized.mul),
),
attr_names=("op_name", "op_func"),
)
qarithmetic_binary_scalar_ops = op_bench.op_list(
attrs=(
("add_scalar", ops.quantized.add_scalar),
("mul_scalar", ops.quantized.mul_scalar),
),
attr_names=("op_name", "op_func"),
)
class _QFunctionalBinaryArithmeticBenchmarkBase(op_bench.TorchBenchmarkBase):
def setup(self, N, dtype, contig):
self.qfunctional = torch.ao.nn.quantized.QFunctional()
# TODO: Consider more diverse shapes
f_input = (torch.rand(N, N) - 0.5) * 256
self.scale = 1.0
self.zero_point = 0
self.q_input_a = torch.quantize_per_tensor(
f_input, scale=self.scale, zero_point=self.zero_point, dtype=dtype
)
if not contig:
permute_dims = list(range(f_input.ndim))[::-1]
self.q_input_a = self.q_input_a.permute(permute_dims)
class QFunctionalBenchmark(_QFunctionalBinaryArithmeticBenchmarkBase):
def init(self, N, dtype, contig, op_func):
super().setup(N, dtype, contig)
self.inputs = {
"q_input_a": self.q_input_a,
"q_input_b": self.q_input_a,
"scale": self.scale,
"zero_point": self.zero_point,
}
self.op_func = op_func
def forward(self, q_input_a, q_input_b, scale: float, zero_point: int):
return self.op_func(q_input_a, q_input_b, scale=scale, zero_point=zero_point)
op_bench.generate_pt_tests_from_op_list(
qarithmetic_binary_ops, qarithmetic_binary_configs, QFunctionalBenchmark
)
class QFunctionalScalarBenchmark(_QFunctionalBinaryArithmeticBenchmarkBase):
def init(self, N, dtype, contig, op_func):
super().setup(N, dtype, contig)
self.inputs = {"q_input": self.q_input_a, "scalar_input": 42}
self.op_func = op_func
def forward(self, q_input, scalar_input: int):
return self.op_func(q_input, scalar_input)
op_bench.generate_pt_tests_from_op_list(
qarithmetic_binary_scalar_ops,
qarithmetic_binary_configs,
QFunctionalScalarBenchmark,
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()