mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
89 lines
2.5 KiB
Python
89 lines
2.5 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
from torch._ops import ops
|
|
|
|
|
|
qarithmetic_binary_configs = op_bench.cross_product_configs(
|
|
N=(2, 8, 64, 512),
|
|
dtype=(torch.quint8, torch.qint8, torch.qint32),
|
|
contig=(False, True),
|
|
tags=("short",),
|
|
)
|
|
|
|
|
|
qarithmetic_binary_ops = op_bench.op_list(
|
|
attrs=(
|
|
("add", ops.quantized.add),
|
|
("add_relu", ops.quantized.add_relu),
|
|
("mul", ops.quantized.mul),
|
|
),
|
|
attr_names=("op_name", "op_func"),
|
|
)
|
|
|
|
qarithmetic_binary_scalar_ops = op_bench.op_list(
|
|
attrs=(
|
|
("add_scalar", ops.quantized.add_scalar),
|
|
("mul_scalar", ops.quantized.mul_scalar),
|
|
),
|
|
attr_names=("op_name", "op_func"),
|
|
)
|
|
|
|
|
|
class _QFunctionalBinaryArithmeticBenchmarkBase(op_bench.TorchBenchmarkBase):
|
|
def setup(self, N, dtype, contig):
|
|
self.qfunctional = torch.ao.nn.quantized.QFunctional()
|
|
|
|
# TODO: Consider more diverse shapes
|
|
f_input = (torch.rand(N, N) - 0.5) * 256
|
|
self.scale = 1.0
|
|
self.zero_point = 0
|
|
self.q_input_a = torch.quantize_per_tensor(
|
|
f_input, scale=self.scale, zero_point=self.zero_point, dtype=dtype
|
|
)
|
|
|
|
if not contig:
|
|
permute_dims = list(range(f_input.ndim))[::-1]
|
|
self.q_input_a = self.q_input_a.permute(permute_dims)
|
|
|
|
|
|
class QFunctionalBenchmark(_QFunctionalBinaryArithmeticBenchmarkBase):
|
|
def init(self, N, dtype, contig, op_func):
|
|
super().setup(N, dtype, contig)
|
|
self.inputs = {
|
|
"q_input_a": self.q_input_a,
|
|
"q_input_b": self.q_input_a,
|
|
"scale": self.scale,
|
|
"zero_point": self.zero_point,
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, q_input_a, q_input_b, scale: float, zero_point: int):
|
|
return self.op_func(q_input_a, q_input_b, scale=scale, zero_point=zero_point)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
qarithmetic_binary_ops, qarithmetic_binary_configs, QFunctionalBenchmark
|
|
)
|
|
|
|
|
|
class QFunctionalScalarBenchmark(_QFunctionalBinaryArithmeticBenchmarkBase):
|
|
def init(self, N, dtype, contig, op_func):
|
|
super().setup(N, dtype, contig)
|
|
self.inputs = {"q_input": self.q_input_a, "scalar_input": 42}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, q_input, scalar_input: int):
|
|
return self.op_func(q_input, scalar_input)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
qarithmetic_binary_scalar_ops,
|
|
qarithmetic_binary_configs,
|
|
QFunctionalScalarBenchmark,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|