[4/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort functorch (#127125)

The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127125
Approved by: https://github.com/Skylion007
ghstack dependencies: #127122, #127123, #127124
This commit is contained in:
Xuehai Pan 2024-05-25 16:21:09 +00:00 committed by PyTorch MergeBot
parent 35ea5c6b22
commit a28bfb5ed5
47 changed files with 129 additions and 95 deletions

View File

@ -1,10 +1,11 @@
import torch
import torch.fx as fx
from functorch import make_fx
from torch._functorch.compile_utils import fx_graph_cse
from torch.profiler import profile, ProfilerActivity
from functorch import make_fx
def profile_it(f, inp):
for _ in range(5):

View File

@ -4,6 +4,7 @@ from functools import partial
import numpy as np
import pandas as pd
import torch
from functorch.compile import pointwise_operator
WRITE_CSV = False

View File

@ -3,11 +3,11 @@ import time
import torch
import torch.nn as nn
import torchvision.models as models
from functorch import grad, make_functional, vmap
from opacus import PrivacyEngine
from opacus.utils.module_modification import convert_batchnorm_modules
from functorch import grad, make_functional, vmap
device = "cuda"
batch_size = 128
torch.manual_seed(0)

View File

@ -2,6 +2,7 @@ import time
import torch
import torch.utils
from functorch.compile import aot_function, tvm_compile
a = torch.randn(2000, 1, 4, requires_grad=True)

View File

@ -2,6 +2,7 @@ import timeit
import torch
import torch.nn as nn
from functorch.compile import compiled_module, tvm_compile

View File

@ -8,6 +8,7 @@ import time
import torch
import torch.nn as nn
from functorch import make_functional
from functorch.compile import nnc_jit

View File

@ -7,6 +7,7 @@
import time
import torch
from functorch import grad, make_fx
from functorch.compile import nnc_jit

View File

@ -38,10 +38,11 @@ import pandas as pd
import torch
import torch.nn.functional as F
import torch.optim as optim
from functorch import make_functional_with_buffers
from support.omniglot_loaders import OmniglotNShot
from torch import nn
from functorch import make_functional_with_buffers
mpl.use("Agg")
plt.style.use("bmh")

View File

@ -8,10 +8,11 @@ import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import torch
from functorch import grad, make_functional, vmap
from torch import nn
from torch.nn import functional as F
from functorch import grad, make_functional, vmap
mpl.use("Agg")

View File

@ -34,11 +34,11 @@ include_trailing_comma = true
[tool.usort.known]
first_party = ["caffe2", "torchgen", "test"]
first_party = ["caffe2", "torchgen", "functorch", "test"]
standard_library = ["typing_extensions"]
[tool.usort.kown]
first_party = ["torch", "functorch"]
first_party = ["torch"]
[tool.ruff]

View File

@ -70,9 +70,10 @@ bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from functorch.compile import min_cut_rematerialization_partition
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,

View File

@ -10,13 +10,13 @@ import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from functorch import make_fx
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)

View File

@ -11,7 +11,6 @@ import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
@ -20,6 +19,8 @@ from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import _pt2_selective_checkpoint_context_fn_gen, checkpoint
from functorch.compile import min_cut_rematerialization_partition
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"

View File

@ -722,9 +722,10 @@ class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
return (out,)
def compile_submod(input_mod, args):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from functorch.compile import nop
class WrapperModule(torch.nn.Module):
def __init__(self):
super().__init__()

View File

@ -240,9 +240,10 @@ class TestCustomBackendAPI(torch._dynamo.test_case.TestCase):
self.assertTrue(backend_run)
def test_aot_autograd_api(self):
from functorch.compile import make_boxed_func
from torch._dynamo.backends.common import aot_autograd
from functorch.compile import make_boxed_func
backend_run = False
def my_compiler(gm, example_inputs):

View File

@ -3,12 +3,13 @@
import unittest
import torch
from functorch import make_fx
from torch._dynamo import debug_utils
from torch._dynamo.debug_utils import aot_graph_input_parser
from torch._dynamo.test_case import TestCase
from torch.testing._internal.inductor_utils import HAS_CUDA
from functorch import make_fx
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
f32 = torch.float32

View File

@ -17,7 +17,6 @@ import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._dynamo.testing
from functorch.experimental.control_flow import cond
from torch._dynamo import config
from torch._dynamo.exc import UserError
from torch._dynamo.testing import normalize_gm
@ -34,6 +33,8 @@ from torch.fx.experimental.symbolic_shapes import (
from torch.testing._internal import common_utils
from torch.testing._internal.common_cuda import TEST_CUDA
from functorch.experimental.control_flow import cond
class ExportTests(torch._dynamo.test_case.TestCase):
# TODO(voz): Refactor to a shared test function.

View File

@ -7,8 +7,6 @@ import sys
import unittest
import warnings
import functorch.experimental.control_flow as control_flow
import torch
import torch._dynamo.config as config
@ -34,6 +32,8 @@ from torch.testing._internal.common_utils import (
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.logging_utils import LoggingTestCase, make_logging_test
import functorch.experimental.control_flow as control_flow
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")

View File

@ -8,11 +8,12 @@ import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._dynamo.testing
from functorch.compile import nop
from torch._dynamo import compiled_autograd
from torch._functorch.aot_autograd import aot_module_simplified
from torch.utils.hooks import RemovableHandle
from functorch.compile import nop
def compiler_fn(gm):
return torch._dynamo.optimize("inductor", nopython=True, dynamic=True)(gm)

View File

@ -166,9 +166,10 @@ bw_graph = [None]
def aot_graph_capture_backend(gm, args):
from functorch.compile import min_cut_rematerialization_partition
from torch._functorch.aot_autograd import aot_module_simplified
from functorch.compile import min_cut_rematerialization_partition
def fw_compiler(gm, _):
fw_graph[0] = gm
return gm

View File

@ -15,7 +15,6 @@ from typing import Dict, List
import torch
import torch._dynamo as torchdynamo
import torch.nn.functional as F
from functorch.experimental.control_flow import cond, map
from torch import Tensor
from torch._dynamo.test_case import TestCase
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse
@ -59,6 +58,8 @@ from torch.utils._pytree import (
treespec_loads,
)
from functorch.experimental.control_flow import cond, map
try:
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor

View File

@ -3,13 +3,14 @@ import copy
import unittest
import torch
from functorch.experimental import control_flow
from torch._dynamo.eval_frame import is_dynamo_supported
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse
from torch.export import export
from torch.fx.passes.infra.pass_base import PassResult
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
from functorch.experimental import control_flow
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
class TestPassInfra(TestCase):

View File

@ -11,7 +11,6 @@ from re import escape
from typing import List, Set
import torch
from functorch.experimental.control_flow import cond
from torch._dynamo.eval_frame import is_dynamo_supported
from torch._export.non_strict_utils import (
_fakify_script_objects,
@ -54,6 +53,8 @@ from torch.testing._internal.common_utils import (
from torch.testing._internal.torchbind_impls import init_torchbind_implementations
from torch.utils import _pytree as pytree
from functorch.experimental.control_flow import cond
def count_call_function(graph: torch.fx.Graph, target: torch.ops.OpOverload) -> int:
count = 0

View File

@ -10,7 +10,6 @@ from typing import Any, List
import torch
import torch._dynamo as torchdynamo
from functorch.experimental.control_flow import cond, map
from torch import Tensor
from torch._export.utils import (
get_buffer,
@ -52,6 +51,8 @@ from torch.utils._pytree import (
treespec_loads,
)
from functorch.experimental.control_flow import cond, map
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
class TestUnflatten(TestCase):

View File

@ -2,7 +2,6 @@
import unittest
import torch
from functorch.experimental import control_flow
from torch import Tensor
from torch._dynamo.eval_frame import is_dynamo_supported
@ -11,6 +10,8 @@ from torch.export import export
from torch.export.exported_program import InputKind, InputSpec, TensorArgument
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
from functorch.experimental import control_flow
@unittest.skipIf(not is_dynamo_supported(), "dynamo isn't supported")
class TestVerifier(TestCase):

View File

@ -6,9 +6,10 @@
import math
import torch
from functorch.dim import cat, dimlists, dims, softmax
from torch import nn
from functorch.dim import cat, dimlists, dims, softmax
class Linear(nn.Linear):
def forward(self, input):

View File

@ -11,13 +11,14 @@ from collections import namedtuple
import torch
import torch.utils._pytree as pytree
from functorch import vmap
from functorch_additional_op_db import additional_op_db
from torch.testing._internal.autograd_function_db import autograd_function_db
from torch.testing._internal.common_device_type import toleranceOverride
from torch.testing._internal.common_methods_invocations import DecorateInfo, op_db
from torch.testing._internal.common_modules import module_db
from functorch import vmap
IS_FBCODE = os.getenv("FUNCTORCH_TEST_FBCODE") == "1"

View File

@ -20,22 +20,6 @@ import torch._dynamo as torchdynamo
import torch.nn as nn
import torch.utils._pytree as pytree
from common_utils import decorate, decorateForModules, skip, skipOps, xfail
from functorch import grad, jacrev, make_fx, vjp, vmap
from functorch.compile import (
aot_function,
aot_module,
compiled_function,
compiled_module,
default_decompositions,
default_partition,
get_aot_compilation_context,
make_boxed_compiler,
memory_efficient_fusion,
min_cut_rematerialization_partition,
nnc_jit,
nop,
)
from functorch.experimental import control_flow
from torch._decomp import decomposition_table
from torch._functorch.aot_autograd import (
aot_export_joint_simple,
@ -77,6 +61,23 @@ from torch.testing._internal.optests import (
)
from torch.testing._internal.two_tensor import TwoTensor, TwoTensorMode
from functorch import grad, jacrev, make_fx, vjp, vmap
from functorch.compile import (
aot_function,
aot_module,
compiled_function,
compiled_module,
default_decompositions,
default_partition,
get_aot_compilation_context,
make_boxed_compiler,
memory_efficient_fusion,
min_cut_rematerialization_partition,
nnc_jit,
nop,
)
from functorch.experimental import control_flow
USE_TORCHVISION = False
try:
import torchvision

View File

@ -5,8 +5,6 @@ import unittest
import torch
import torch.utils._pytree as pytree
from functorch.experimental import control_flow
from functorch.experimental.control_flow import cond, UnsupportedAliasMutationException
from torch._higher_order_ops.while_loop import while_loop
from torch._subclasses.functional_tensor import (
CppFunctionalizeAPI,
@ -27,6 +25,9 @@ from torch.testing._internal.common_utils import (
TestCase,
)
from functorch.experimental import control_flow
from functorch.experimental.control_flow import cond, UnsupportedAliasMutationException
# TODO: pull these helpers from AOTAutograd later
def to_fun(t):

View File

@ -14,6 +14,13 @@ import torch
from attn_ft import BertSelfAttention as BertSelfAttentionA, Linear
from attn_positional import BertSelfAttention as BertSelfAttentionB
from torch.testing._internal.common_utils import (
run_tests,
skipIfTorchDynamo,
TEST_CUDA,
TestCase,
)
from functorch._C import dim as _C
from functorch.dim import (
Dim,
@ -25,13 +32,6 @@ from functorch.dim import (
Tensor,
)
from torch.testing._internal.common_utils import (
run_tests,
skipIfTorchDynamo,
TEST_CUDA,
TestCase,
)
try:
from torchvision.models import resnet18
except ImportError:

View File

@ -15,8 +15,6 @@ import unittest
import warnings
from functools import partial, wraps
import functorch
# NB: numpy is a testing dependency!
import numpy as np
import torch
@ -24,21 +22,6 @@ import torch.autograd.forward_ad as fwAD
import torch.nn as nn
import torch.nn.functional as F
from common_utils import expectedFailureIf
from functorch import (
combine_state_for_ensemble,
grad,
grad_and_value,
hessian,
jacfwd,
jacrev,
jvp,
make_functional,
make_functional_with_buffers,
make_fx,
vjp,
vmap,
)
from functorch.experimental import functionalize, replace_all_batch_norm_modules_
from torch._C import _ExcludeDispatchKeyGuard, DispatchKey, DispatchKeySet
from torch._dynamo import allow_in_graph
from torch._functorch.eager_transforms import _slice_argnums
@ -81,6 +64,23 @@ from torch.testing._internal.common_utils import (
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
import functorch
from functorch import (
combine_state_for_ensemble,
grad,
grad_and_value,
hessian,
jacfwd,
jacrev,
jvp,
make_functional,
make_functional_with_buffers,
make_fx,
vjp,
vmap,
)
from functorch.experimental import functionalize, replace_all_batch_norm_modules_
USE_TORCHVISION = False
try:
import torchvision # noqa: F401

View File

@ -8,12 +8,13 @@ from typing import Callable
import torch
import torch.fx as fx
import torch.nn as nn
from functorch import make_fx
from functorch.compile import memory_efficient_fusion
from torch._functorch.compile_utils import fx_graph_cse
from torch.nn import functional as F
from torch.testing._internal.common_utils import run_tests, TestCase
from functorch import make_fx
from functorch.compile import memory_efficient_fusion
HAS_CUDA = torch.cuda.is_available()

View File

@ -1,11 +1,12 @@
# Owner(s): ["module: functorch"]
import torch
from functorch import make_fx
from functorch.compile import minifier
from torch._functorch.compile_utils import get_outputs, get_placeholders
from torch.testing._internal.common_utils import run_tests, TestCase
from functorch import make_fx
from functorch.compile import minifier
class TestMinifier(TestCase):
def test_has_mul_minifier(self):

View File

@ -29,7 +29,6 @@ from common_utils import (
tol2,
xfail,
)
from functorch import grad, jacfwd, jacrev, vjp, vmap
from functorch_additional_op_db import additional_op_db
from torch import Tensor
from torch._functorch.eager_transforms import _as_tuple, jvp
@ -62,6 +61,8 @@ from torch.testing._internal.opinfo.core import SampleInput
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
from functorch import grad, jacfwd, jacrev, vjp, vmap
aten = torch.ops.aten

View File

@ -27,6 +27,8 @@ SOFTWARE.
from typing import Any, Callable, Dict
from unittest import mock
from torch.testing._internal.common_utils import run_tests, TestCase
from functorch.einops._parsing import (
_ellipsis,
AnonymousAxis,
@ -34,7 +36,6 @@ from functorch.einops._parsing import (
ParsedExpression,
validate_rearrange_expressions,
)
from torch.testing._internal.common_utils import run_tests, TestCase
mock_anonymous_axis_eq: Callable[[AnonymousAxis, object], bool] = (
lambda self, other: isinstance(other, AnonymousAxis) and self.value == other.value

View File

@ -29,9 +29,10 @@ from typing import List, Tuple
import numpy as np
import torch
from functorch.einops import rearrange
from torch.testing._internal.common_utils import run_tests, TestCase
from functorch.einops import rearrange
identity_patterns: List[str] = [
"...->...",
"a b c d e-> a b c d e",

View File

@ -18,7 +18,6 @@ from collections import namedtuple
from typing import OrderedDict
from unittest.case import skipIf
import functorch
import torch
import torch.nn.functional as F
from common_utils import (
@ -36,8 +35,6 @@ from common_utils import (
tol1,
xfail,
)
from functorch import grad, grad_and_value, jacfwd, jvp, vjp, vmap
from functorch.experimental import chunk_vmap
from functorch_additional_op_db import additional_op_db
from torch import Tensor
from torch._C._functorch import reshape_dim_into, reshape_dim_outof
@ -68,6 +65,10 @@ from torch.testing._internal.common_utils import (
)
from torch.utils import _pytree as pytree
import functorch
from functorch import grad, grad_and_value, jacfwd, jvp, vjp, vmap
from functorch.experimental import chunk_vmap
FALLBACK_REGEX = "There is a performance drop"

View File

@ -106,9 +106,10 @@ class EfficientConvBNEvalTemplate(TestCase):
def test_conv_bn_eval(
test_class, use_bias, module, sync_bn, decompose_nn_module
):
from functorch import make_fx
from torch._dispatch.python import enable_python_dispatcher
from functorch import make_fx
kwargs = {"kernel_size": 3, "stride": 2} if module[0] != nn.Linear else {}
mod_eager = test_class(
module[0],

View File

@ -2,8 +2,6 @@
import contextlib
from unittest.mock import patch
import functorch
import torch
import torch._inductor.config as config
import torch.autograd
@ -30,6 +28,8 @@ from torch.testing._internal.common_utils import skipIfRocm
# Defines all the kernels for tests
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import functorch
if HAS_CUDA:
from torch.testing._internal.triton_utils import add_kernel

View File

@ -107,7 +107,6 @@ class KernelTests(torch._inductor.test_case.TestCase):
@requires_cuda
@skipIfRocm
def test_triton_kernel_functionalize(self):
from functorch import make_fx
from torch._higher_order_ops.triton_kernel_wrap import kernel_side_table
from torch._subclasses.functional_tensor import (
CppFunctionalizeAPI,
@ -115,6 +114,8 @@ class KernelTests(torch._inductor.test_case.TestCase):
PythonFunctionalizeAPI,
)
from functorch import make_fx
kernel_side_table.reset_table()
def f(x, output):

View File

@ -13,13 +13,14 @@ import torch._custom_ops as custom_ops
import torch.testing._internal.optests as optests
import torch.utils.cpp_extension
from functorch import make_fx
from torch import Tensor
from torch._custom_op.impl import custom_op, CustomOp, infer_schema
from torch._utils_internal import get_file_path_2
from torch.testing._internal import custom_op_db
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.custom_op_db import numpy_nonzero
from functorch import make_fx
from typing import * # noqa: F403
import numpy as np

View File

@ -5,9 +5,9 @@ import functools
from importlib import import_module
from typing import Any, List, Optional
from functorch.compile import min_cut_rematerialization_partition
import torch
from functorch.compile import min_cut_rematerialization_partition
from torch import _guards
from torch._functorch import config as functorch_config
from torch._functorch.compilers import ts_compile

View File

@ -11,10 +11,10 @@ from itertools import count
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
from unittest import mock
from functorch.compile import min_cut_rematerialization_partition
import torch.fx
import torch.utils._pytree as pytree
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo import (
compiled_autograd,
config as dynamo_config,

View File

@ -14,9 +14,9 @@ import subprocess
from typing import Any, Dict, List, Optional
from unittest.mock import patch
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
import torch
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
from torch import fx as fx
from torch._dynamo.repro.after_aot import save_graph_repro, wrap_compiler_debug

View File

@ -5,8 +5,6 @@ from dataclasses import dataclass
from functools import partial, wraps
from typing import Any, Callable, cast, Dict, List, Optional, Set, Tuple, Union
from functorch import make_fx
import torch
import torch.distributed as dist
@ -15,6 +13,8 @@ import torch.distributed._functional_collectives
import torch.nn as nn
import torch.utils._pytree as pytree
from functorch import make_fx
from torch import fx
from torch._decomp.decompositions import native_layer_norm_backward

View File

@ -6,10 +6,10 @@ import logging
import operator
from typing import Callable, List, Optional, Set, Tuple
from functorch import make_fx
import torch
from functorch import make_fx
from torch._inductor.compile_fx import compile_fx_inner
from torch._inductor.decomposition import select_decomp_table

View File

@ -1,11 +1,11 @@
from operator import itemgetter
from typing import List
from functorch.compile import make_boxed_func
import torch
import torch.fx
import torch.nn as nn
from functorch.compile import make_boxed_func
from torch._functorch.compilers import aot_module
from torch._inductor.decomposition import select_decomp_table
from torch.distributed._tensor import DTensor