mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127125 Approved by: https://github.com/Skylion007 ghstack dependencies: #127122, #127123, #127124
299 lines
9.1 KiB
Python
299 lines
9.1 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
import torch._dynamo
|
|
import torch._dynamo.test_case
|
|
from torch._dynamo.backends.debugging import ExplainWithBackend
|
|
from torch._dynamo.backends.onnxrt import has_onnxruntime
|
|
from torch._dynamo.backends.tvm import has_tvm
|
|
from torch._dynamo.testing import same
|
|
from torch.fx._lazy_graph_module import _force_skip_lazy_graph_module
|
|
from torch.testing._internal.inductor_utils import HAS_CUDA
|
|
|
|
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
|
|
|
|
|
|
class Seq(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layers = torch.nn.Sequential(
|
|
torch.nn.Linear(10, 10),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Linear(10, 10),
|
|
torch.nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class Conv_Bn_Relu(torch.nn.Module):
|
|
def __init__(self, in_channels, out_channels, **kwargs):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
|
|
self.bn = torch.nn.BatchNorm2d(out_channels, eps=0.001)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
return self.relu(self.bn(self.conv(x)))
|
|
|
|
|
|
class TestOptimizations(torch._dynamo.test_case.TestCase):
|
|
def test_example_inputs(self):
|
|
def fn(a, bc, d):
|
|
b, c = bc
|
|
return a / d - b / c
|
|
|
|
def compiler_fn(graph, example_inputs):
|
|
nonlocal r1
|
|
r1 = graph(*example_inputs)[0]
|
|
return graph.forward
|
|
|
|
a = torch.empty(2).fill_(1)
|
|
b = torch.empty(2).fill_(2)
|
|
c = torch.empty(2).fill_(3)
|
|
d = 4
|
|
r1 = None
|
|
r2 = fn(a, (b, c), d)
|
|
opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
|
|
r3 = opt_fn(a, (b, c), d)
|
|
|
|
self.assertIsNotNone(r1)
|
|
self.assertEqual(r1.size(), r2.size())
|
|
self.assertEqual(r1.stride(), r2.stride())
|
|
self.assertEqual(r1.dtype, r2.dtype)
|
|
|
|
self.assertEqual(r1.size(), r3.size())
|
|
self.assertEqual(r1.stride(), r3.stride())
|
|
self.assertEqual(r1.dtype, r3.dtype)
|
|
|
|
def test_example_inputs_runtime_use(self):
|
|
def fn(a, bc, d):
|
|
b, c = bc
|
|
return a / d - b / c
|
|
|
|
def compiler_fn(graph, example_inputs):
|
|
def fwd(*args):
|
|
nonlocal r1
|
|
r = graph.forward(*args)
|
|
r1 = r[0]
|
|
return r
|
|
|
|
return fwd
|
|
|
|
a = torch.empty(2).fill_(1)
|
|
b = torch.empty(2).fill_(2)
|
|
c = torch.empty(2).fill_(3)
|
|
d = 4
|
|
r1 = None
|
|
r2 = fn(a, (b, c), d)
|
|
opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
|
|
r3 = opt_fn(a, (b, c), d)
|
|
|
|
self.assertIsNotNone(r1)
|
|
self.assertTrue(same(r1, r2))
|
|
self.assertTrue(same(r1, r3))
|
|
|
|
def _check_backend_works(self, backend, options=None):
|
|
model = Seq().eval()
|
|
input = torch.randn(2, 10)
|
|
r1 = model(input)
|
|
r2 = torch.compile(model, backend=backend, options=options)(input)
|
|
self.assertTrue(same(r1, r2.float(), tol=0.01))
|
|
|
|
def test_eager(self):
|
|
self._check_backend_works("eager")
|
|
|
|
@_force_skip_lazy_graph_module()
|
|
def test_torchscript(self):
|
|
self._check_backend_works("ts")
|
|
|
|
def test_aot_eager(self):
|
|
self._check_backend_works("aot_eager")
|
|
|
|
def test_aot_eager_decomp_partition(self):
|
|
self._check_backend_works("aot_eager_decomp_partition")
|
|
|
|
@_force_skip_lazy_graph_module()
|
|
def test_aot_ts(self):
|
|
self._check_backend_works("aot_ts")
|
|
|
|
@requires_cuda
|
|
def test_aot_cudagraphs(self):
|
|
self._check_backend_works("cudagraphs")
|
|
|
|
@unittest.skipIf(not has_onnxruntime(), "requires onnxruntime")
|
|
def test_onnxrt(self):
|
|
self._check_backend_works("onnxrt")
|
|
|
|
@unittest.skipIf(not has_tvm(), "requires tvm")
|
|
def test_tvm(self):
|
|
self._check_backend_works("tvm")
|
|
self._check_backend_works("tvm", options={"scheduler": None})
|
|
|
|
def test_list_backends(self):
|
|
self.assertIn("inductor", torch._dynamo.list_backends())
|
|
self.assertIn("inductor", torch._dynamo.list_backends(exclude_tags=None))
|
|
self.assertNotIn("eager", torch._dynamo.list_backends())
|
|
self.assertNotIn("eager", torch._dynamo.list_backends(exclude_tags=["debug"]))
|
|
self.assertIn("eager", torch._dynamo.list_backends(exclude_tags=[]))
|
|
|
|
|
|
class NormalizeIRTests(torch._dynamo.test_case.TestCase):
|
|
def test_inplace_normalize(self):
|
|
def fn(a, b):
|
|
x = torch.cos(a)
|
|
x += b
|
|
return torch.sin(x)
|
|
|
|
a = torch.randn(10)
|
|
b = torch.randn(10).to(torch.float64)
|
|
|
|
ref = fn(a, b)
|
|
|
|
optimized_fn = torch._dynamo.optimize("aot_eager")(fn)
|
|
res = optimized_fn(a, b)
|
|
self.assertTrue(same(ref, res))
|
|
|
|
|
|
class MPSNotSupportedTest(torch._dynamo.test_case.TestCase):
|
|
@unittest.skipIf(not torch.backends.mps.is_available(), "requires mps")
|
|
def test_mps_not_supported(self):
|
|
model = Seq().to("mps")
|
|
example_input = torch.randn(1, 10).to("mps")
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.compile(model, backend="inductor")(example_input),
|
|
)
|
|
|
|
|
|
class TestExplainWithBackend(torch._dynamo.test_case.TestCase):
|
|
def test_explain_with_backend(self):
|
|
def fn3(x):
|
|
x = torch.sin(x)
|
|
torch._dynamo.graph_break()
|
|
x = torch.sin(x)
|
|
return x
|
|
|
|
def fn2(x):
|
|
x = torch.cos(x)
|
|
x = fn3(x)
|
|
x = torch.cos(x)
|
|
return x
|
|
|
|
def fn1(x):
|
|
x = torch.tan(x)
|
|
x = fn2(x)
|
|
x = torch.tan(x)
|
|
return x
|
|
|
|
def fn(x):
|
|
x = torch.sigmoid(x)
|
|
x = fn1(x)
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
# Wrap TorchInductor with explain backend
|
|
eb = ExplainWithBackend("inductor")
|
|
optimized_fn = torch.compile(fn, backend=eb)
|
|
input_tensor = torch.randn(5)
|
|
result = optimized_fn(input_tensor)
|
|
|
|
# Check that fn still produces the same output when wrapped by ExplainWithBackend
|
|
self.assertTrue(torch.allclose(result, fn(input_tensor)))
|
|
|
|
# Verify ExplainOutput object contents, output might change but make sure these fields are present
|
|
explain_output = eb.output()
|
|
explain_str = str(explain_output)
|
|
self.assertIn("Graph Count", explain_str)
|
|
self.assertIn("Graph Break Count", explain_str)
|
|
self.assertIn("Op Count", explain_str)
|
|
self.assertIn("Break Reasons", explain_str)
|
|
|
|
# Verify that for the given functions above, we report the correct number of graphs, graph breaks, and ops
|
|
self.assertEqual(8, explain_output.graph_count)
|
|
self.assertEqual(7, explain_output.graph_break_count)
|
|
self.assertEqual(8, explain_output.op_count)
|
|
|
|
|
|
class TestCustomBackendAPI(torch._dynamo.test_case.TestCase):
|
|
"""Test APIs documented by https://pytorch.org/docs/main/torch.compiler_custom_backends.html"""
|
|
|
|
def test_register_backend_api(self):
|
|
from torch._dynamo import register_backend
|
|
|
|
backend_run = False
|
|
|
|
@register_backend
|
|
def my_custom_backend(gm, example_inputs):
|
|
nonlocal backend_run
|
|
backend_run = True
|
|
return gm.forward
|
|
|
|
def f(x):
|
|
return torch.relu(x)
|
|
|
|
opt_f = torch.compile(f, backend="my_custom_backend")
|
|
opt_f(torch.randn(3, 3))
|
|
self.assertTrue(backend_run)
|
|
|
|
def test_aot_autograd_api(self):
|
|
from torch._dynamo.backends.common import aot_autograd
|
|
|
|
from functorch.compile import make_boxed_func
|
|
|
|
backend_run = False
|
|
|
|
def my_compiler(gm, example_inputs):
|
|
nonlocal backend_run
|
|
backend_run = True
|
|
return make_boxed_func(gm.forward)
|
|
|
|
my_backend = aot_autograd(fw_compiler=my_compiler)
|
|
|
|
def f(x):
|
|
return torch.relu(x)
|
|
|
|
opt_f = torch.compile(f, backend=my_backend)
|
|
opt_f(torch.randn(3, 3))
|
|
self.assertTrue(backend_run)
|
|
|
|
def test_lookup_backend(self):
|
|
from torch._dynamo import list_backends, lookup_backend
|
|
|
|
backends = list_backends()
|
|
backend_run = False
|
|
|
|
def my_compiler(gm, example_inputs):
|
|
nonlocal backend_run
|
|
backend_run = True
|
|
try:
|
|
trt_compiled = lookup_backend("tensorrt")(gm, example_inputs)
|
|
if trt_compiled is not None:
|
|
return trt_compiled
|
|
except Exception:
|
|
pass
|
|
# first backend failed, try something else...
|
|
try:
|
|
inductor_compiled = lookup_backend("inductor")(gm, example_inputs)
|
|
if inductor_compiled is not None:
|
|
return inductor_compiled
|
|
except Exception:
|
|
pass
|
|
return gm.forward
|
|
|
|
def f(x):
|
|
return torch.relu(x)
|
|
|
|
opt_f = torch.compile(f, backend=my_compiler)
|
|
opt_f(torch.randn(3, 3))
|
|
self.assertTrue(backend_run)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|