mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127125 Approved by: https://github.com/Skylion007 ghstack dependencies: #127122, #127123, #127124
2554 lines
86 KiB
Python
2554 lines
86 KiB
Python
# Owner(s): ["module: functorch"]
|
|
import contextlib
|
|
import functools
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
from torch._higher_order_ops.while_loop import while_loop
|
|
from torch._subclasses.functional_tensor import (
|
|
CppFunctionalizeAPI,
|
|
FunctionalTensor,
|
|
FunctionalTensorMode,
|
|
PythonFunctionalizeAPI,
|
|
)
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
from torch.testing._internal.common_quantization import skipIfNoDynamoSupport
|
|
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
IS_WINDOWS,
|
|
parametrize,
|
|
run_tests,
|
|
skipIfTorchDynamo,
|
|
TEST_WITH_TORCHDYNAMO,
|
|
TestCase,
|
|
)
|
|
|
|
from functorch.experimental import control_flow
|
|
from functorch.experimental.control_flow import cond, UnsupportedAliasMutationException
|
|
|
|
|
|
# TODO: pull these helpers from AOTAutograd later
|
|
def to_fun(t):
|
|
if isinstance(t, torch.Tensor):
|
|
return FunctionalTensor.to_functional(t)
|
|
return t
|
|
|
|
|
|
def from_fun(t):
|
|
if not isinstance(t, FunctionalTensor):
|
|
# quick sanity assert
|
|
if isinstance(t, torch.Tensor):
|
|
assert not torch._is_functional_tensor(t)
|
|
return t
|
|
torch._sync(t)
|
|
return torch._from_functional_tensor(t.elem)
|
|
|
|
|
|
def to_fun_old(t):
|
|
if isinstance(t, torch.Tensor) and not torch._is_functional_tensor(t):
|
|
out = torch._to_functional_tensor(t)
|
|
torch._mirror_autograd_meta_to(t, out)
|
|
return out
|
|
return t
|
|
|
|
|
|
def from_fun_old(t):
|
|
# quick sanity assert
|
|
if isinstance(t, torch.Tensor):
|
|
assert torch._is_functional_tensor(t)
|
|
torch._sync(t)
|
|
return torch._from_functional_tensor(t)
|
|
return t
|
|
|
|
|
|
def _fake_map(f, x, *args):
|
|
from functorch.experimental.control_flow import _stack_pytree, _unstack_pytree
|
|
|
|
x_pytrees = _unstack_pytree(x)
|
|
zs = []
|
|
for xp in x_pytrees:
|
|
zs.append(f(xp, *args))
|
|
return _stack_pytree(zs)
|
|
|
|
|
|
def _fake_while_loop(cond_fn, body_fn, operands):
|
|
while cond_fn(*operands):
|
|
operands = body_fn(*operands)
|
|
return operands
|
|
|
|
|
|
def _while_loop_tests():
|
|
def simple(x):
|
|
def cond_fn(x):
|
|
return x.sum() < 10
|
|
|
|
def body_fn(x):
|
|
return (x + 1,)
|
|
|
|
return while_loop(cond_fn, body_fn, (x,))
|
|
|
|
def simple_with_mutation(x):
|
|
def cond_fn(x):
|
|
y = x.clone().add_(1).add_(-1)
|
|
return y.sum() < 10
|
|
|
|
def body_fn(x):
|
|
y = x.clone().add_(1).add_(-1)
|
|
return (y + 1,)
|
|
|
|
return while_loop(cond_fn, body_fn, (x,))
|
|
|
|
def nested(out_iter, it, y):
|
|
def cond_fn(out_iter, it, y):
|
|
return it.sum() < 10
|
|
|
|
def body_fn(out_iter, it, y):
|
|
return (out_iter.clone(), it + y, y + 1)
|
|
|
|
def outer_cond_fn(out_iter, it, y):
|
|
return out_iter.sum() < 2
|
|
|
|
def outer_body_fn(out_iter, it, y):
|
|
out_iter, it, y = while_loop(cond_fn, body_fn, (out_iter, it, y))
|
|
return (out_iter + 1, it, y)
|
|
|
|
return while_loop(outer_cond_fn, outer_body_fn, (out_iter, it, y))
|
|
|
|
class Nested(torch.nn.Module):
|
|
def forward(self, ci, cj, a, b):
|
|
def cond_fn(i1, j1, x1, y1):
|
|
return i1 > 0
|
|
|
|
def body_fn(i1, j1, x1, y1):
|
|
def cond_fn_nested(i2, j2, x2, y2):
|
|
return j2 > 0
|
|
|
|
def body_fn_nested(i2, j2, x2, y2):
|
|
return i2.clone(), j2 - 1, x2 + 3.14, y2 - 2.71
|
|
|
|
i1, j1, x1, y1 = while_loop(
|
|
cond_fn_nested, body_fn_nested, [i1, j1, x1, y1]
|
|
)
|
|
return i1 - 1, j1.clone(), x1 * 2, y1 / 2
|
|
|
|
return while_loop(cond_fn, body_fn, (ci, cj, a, b))
|
|
|
|
class SimpleWithLinear(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
self.register_buffer("dec", torch.tensor(1))
|
|
|
|
def forward(self, iter, x):
|
|
def cond_fn(it, x):
|
|
return it - self.dec > 0
|
|
|
|
def body_fn(it, x):
|
|
return it - 1, self.linear(x)
|
|
|
|
return while_loop(cond_fn, body_fn, (iter, x))
|
|
|
|
class NestedWithLinear(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.mod = SimpleWithLinear()
|
|
self.outer_linear = torch.nn.Linear(2, 2)
|
|
self.register_buffer("dec", torch.tensor(1))
|
|
|
|
def forward(self, iter, x):
|
|
def cond_fn(it, x):
|
|
return it - self.dec > 0
|
|
|
|
def body_fn(it, x):
|
|
return it - 1, self.outer_linear(self.mod(it, x)[1])
|
|
|
|
return while_loop(cond_fn, body_fn, (iter, x))
|
|
|
|
nested2 = Nested()
|
|
simple_with_linear = SimpleWithLinear()
|
|
nested_with_linear = NestedWithLinear()
|
|
|
|
x = torch.zeros(1)
|
|
y = torch.zeros(1)
|
|
z = torch.zeros(1)
|
|
return {
|
|
"simple": (simple, (x,)),
|
|
"nested": (nested, (x, y, z)),
|
|
"nested2": (
|
|
nested2,
|
|
(torch.tensor(2), torch.tensor(2), torch.ones(2, 2), torch.ones(2, 2)),
|
|
),
|
|
"simple_with_mutation": (simple_with_mutation, (x,)),
|
|
"simple_with_linear": (
|
|
simple_with_linear,
|
|
(torch.tensor(3), torch.randn(2, 2)),
|
|
),
|
|
"nested_with_linear": (
|
|
nested_with_linear,
|
|
(torch.tensor(3), torch.randn(2, 2)),
|
|
),
|
|
}
|
|
|
|
|
|
WHILE_LOOP_TESTS = _while_loop_tests()
|
|
|
|
|
|
def collect_meta_for_filtered_nodes(
|
|
gm: torch.fx.GraphModule, node_names, meta_field_name
|
|
):
|
|
ret = []
|
|
for mod in gm.modules():
|
|
for node in mod.graph.nodes:
|
|
if node.name in node_names:
|
|
for field_name in meta_field_name:
|
|
ret.append(node.meta.get(field_name))
|
|
return ret
|
|
|
|
|
|
def reduce_func(*operands):
|
|
acc = 0
|
|
for operand in operands:
|
|
acc += operand
|
|
return acc
|
|
|
|
|
|
class ReduceObj:
|
|
def __call__(self, *operands):
|
|
return reduce_func(*operands)
|
|
|
|
|
|
class ReduceMod(torch.nn.Module):
|
|
def _reduce(self, *operands):
|
|
return reduce_func(*operands)
|
|
|
|
def forward(self, *operands):
|
|
return self._reduce(*operands)
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
|
|
@skipIfNoDynamoSupport
|
|
class TestControlFlow(TestCase):
|
|
def setUp(self):
|
|
torch._dynamo.reset()
|
|
super().setUp()
|
|
|
|
def test_cond_no_trace(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
x = torch.randn(4)
|
|
result = cond(False, true_fn, false_fn, [x])
|
|
self.assertEqual(result, torch.cos(x))
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_cond_gpu(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
x = torch.randn(4, device="cuda")
|
|
pred = torch.tensor(False, device="cuda")
|
|
result = cond(pred, true_fn, false_fn, [x])
|
|
self.assertEqual(result, torch.cos(x))
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_map_gpu(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
xs = torch.ones(3, 2, 2, device="cuda")
|
|
y = torch.ones(2, device="cuda")
|
|
res = control_flow.map(f, xs, y)
|
|
expected = _fake_map(f, xs, y)
|
|
self.assertEqual(expected, res)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
|
|
def test_while_loop_gpu(self):
|
|
def cond_fn(x):
|
|
return x.sum() < 10
|
|
|
|
def body_fn(x):
|
|
return (x + 1,)
|
|
|
|
x = torch.zeros(1, device="cuda")
|
|
res = while_loop(cond_fn, body_fn, (x,))
|
|
expected = _fake_while_loop(cond_fn, body_fn, (x,))
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_map_illegal_inputs(self):
|
|
def f(x, y):
|
|
return x[0] + x[1] + y
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Mapped xs can only consist of tensors\. Got xs \[3, tensor\(\[1\., 1\.\]\)\]\.",
|
|
):
|
|
_ = control_flow.map(f, (3, torch.ones(2)), torch.ones(2))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Leading dimensions of mapped xs cannot be 0\."
|
|
):
|
|
_ = control_flow.map(
|
|
f, (torch.ones(0, 1, 2), torch.ones(0, 1, 2)), torch.ones(2)
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Leading dimensions of mapped xs must be consistent\. "
|
|
r"Got shapes \[torch\.Size\(\[3, 4, 5\]\), torch\.Size\(\[4, 4, 5\]\)\]\.",
|
|
):
|
|
_ = control_flow.map(
|
|
f, (torch.ones(3, 4, 5), torch.ones(4, 4, 5)), torch.ones(5)
|
|
)
|
|
|
|
def test_map_illegal_outputs(self):
|
|
def f(x, y):
|
|
return x.item()
|
|
|
|
def f1(x, y):
|
|
return y.size()
|
|
|
|
def f2(x, y):
|
|
return None
|
|
|
|
x = torch.ones([3])
|
|
y = torch.ones([1, 2, 3])
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Expect outputs of map only contains tensors or None\."
|
|
):
|
|
_ = control_flow.map(f, x, y)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Expect outputs of map only contains tensors or None\."
|
|
):
|
|
out = control_flow.map(f1, x, y)
|
|
|
|
# return None is OK
|
|
_ = control_flow.map(f2, x, y)
|
|
|
|
def test_map_list_in_out(self):
|
|
def f(x, y):
|
|
return [[x[0][0] + y]]
|
|
|
|
xs = [[torch.ones(3, 2, 2)]]
|
|
y = torch.ones(2)
|
|
res = control_flow.map(f, xs, y)
|
|
expected = _fake_map(f, xs, y)
|
|
self.assertEqual(len(res), 1)
|
|
self.assertEqual(len(res[0]), 1)
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_map_dict_in_out(self):
|
|
def f(x, y):
|
|
return {"c": x["a"]["b"] + y}
|
|
|
|
xs = {"a": {"b": torch.ones(3, 2, 2)}}
|
|
y = torch.ones(2)
|
|
res = control_flow.map(f, xs, y)
|
|
expected = _fake_map(f, xs, y)
|
|
self.assertEqual(len(res), 1)
|
|
self.assertTrue("c" in res)
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_map_autograd_simple(self):
|
|
def f(x, y):
|
|
return x.sin().cos() * y.cos().sin()
|
|
|
|
xs = torch.ones(3, 2, 2, requires_grad=True)
|
|
y = torch.ones(2, requires_grad=True)
|
|
res = control_flow.map(f, xs, y)
|
|
expected_res = _fake_map(f, xs, y)
|
|
grad_out = torch.ones_like(res)
|
|
grads = torch.autograd.grad(res, (xs, y), grad_out)
|
|
expected_grads = torch.autograd.grad(expected_res, (xs, y), grad_out)
|
|
self.assertEqual(expected_res, res)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def test_map_autograd_simple_partial_grad(self):
|
|
def f(x, y):
|
|
return x.sin().cos() * y.cos().sin()
|
|
|
|
xs = torch.ones(3, 2, 2, requires_grad=True)
|
|
# Disable the gradient computation for y
|
|
y = torch.ones(2, requires_grad=False)
|
|
res = control_flow.map(f, xs, y)
|
|
expected_res = _fake_map(f, xs, y)
|
|
grad_out = torch.ones_like(res)
|
|
grads = torch.autograd.grad(res, (xs,), grad_out)
|
|
expected_grads = torch.autograd.grad(expected_res, (xs,), grad_out)
|
|
self.assertEqual(expected_res, res)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def test_map_autograd_no_grad_output(self):
|
|
def f(x, y):
|
|
return x[0].sin().cos() + y, y.cos().sin()
|
|
|
|
xs = [torch.ones(3, 2, 2, requires_grad=True), torch.ones(3, 3)]
|
|
# Disable the gradient computation for y
|
|
y = torch.ones(2, requires_grad=False)
|
|
res = control_flow.map(f, xs, y)
|
|
expected_res = _fake_map(f, xs, y)
|
|
grad_out = torch.ones_like(res[0])
|
|
grads = torch.autograd.grad(res[0], (xs[0],), grad_out)
|
|
expected_grads = torch.autograd.grad(expected_res[0], (xs[0],), grad_out)
|
|
self.assertEqual(expected_res, res)
|
|
self.assertEqual(expected_grads, grads)
|
|
|
|
def test_map_autograd_nested_list(self):
|
|
import torch.utils._pytree as pytree
|
|
|
|
def f(x, y):
|
|
a, b = x
|
|
c, d = a
|
|
return [[b.sin() * c.cos()], d.sin() * y.cos()]
|
|
|
|
def fwbw(map_op, f, x, y):
|
|
z = map_op(f, x, y)
|
|
flat_x = pytree.tree_leaves(x)
|
|
flat_z = pytree.tree_leaves(z)
|
|
grads = torch.autograd.grad(
|
|
flat_z, flat_x, [torch.ones_like(z) for z in flat_z]
|
|
)
|
|
return z, grads
|
|
|
|
x = [
|
|
[
|
|
torch.randn(3, 2, 2, requires_grad=True),
|
|
torch.randn(3, 2, 1, requires_grad=True),
|
|
],
|
|
torch.ones(3, 1, 2, requires_grad=True),
|
|
]
|
|
y = torch.ones(1, requires_grad=True)
|
|
true_outs = fwbw(control_flow.map, f, x, y)
|
|
fake_outs = fwbw(_fake_map, f, x, y)
|
|
self.assertEqual(true_outs, fake_outs)
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
|
|
@skipIfNoDynamoSupport
|
|
class TestControlFlowTraced(TestCase):
|
|
def setUp(self):
|
|
torch._dynamo.reset()
|
|
super().setUp()
|
|
|
|
def _check_tracing(self, fn, args, allow_non_fake_inputs=False):
|
|
graphs = {}
|
|
eager_res = fn(*args)
|
|
for tracing_mode in ["symbolic", "real", "fake"]:
|
|
graph = make_fx(
|
|
fn,
|
|
tracing_mode=tracing_mode,
|
|
_allow_non_fake_inputs=allow_non_fake_inputs,
|
|
)(*args)
|
|
graphs[tracing_mode] = graph
|
|
self.assertEqual(graph(*args), eager_res)
|
|
return graphs
|
|
|
|
def _check_compile(self, fn, args, *, backend="eager"):
|
|
eager_res = fn(*args)
|
|
compiled_fn = torch.compile(fn, backend=backend)
|
|
self.assertEqual(compiled_fn(*args), eager_res)
|
|
|
|
def test_cond_traced_not_nested(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f)(x, torch.tensor(False))
|
|
result_true = graph.forward(x, torch.tensor(True))
|
|
result_false = graph.forward(x, torch.tensor(False))
|
|
self.assertFalse(torch.allclose(result_true, result_false))
|
|
self.assertEqual(result_true, torch.sin(x))
|
|
self.assertEqual(result_false, torch.cos(x))
|
|
|
|
graph = make_fx(f, tracing_mode="symbolic")(x, torch.tensor(False))
|
|
self.assertEqual(graph(x, torch.tensor(True)), f(x, torch.tensor(True)))
|
|
|
|
def test_while_loop_nested_traced(self):
|
|
fn, inp = WHILE_LOOP_TESTS["nested"]
|
|
graphs = self._check_tracing(fn, inp)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, out_iter_1, it_1, y_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (out_iter_1, it_1, y_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = out_iter_1 = it_1 = y_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]; while_loop = None
|
|
return (getitem, getitem_1, getitem_2)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
sum_1 = torch.ops.aten.sum.default(arg0_1); arg0_1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 2); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]; while_loop = None
|
|
add = torch.ops.aten.add.Tensor(getitem, 1); getitem = None
|
|
return (add, getitem_1, getitem_2)
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def _wrap_with_functionalize(self, fn, func_type):
|
|
mode = None
|
|
if func_type == "cpp":
|
|
fn = CppFunctionalizeAPI().functionalize(fn)
|
|
elif func_type == "python":
|
|
fn = PythonFunctionalizeAPI().functionalize(fn)
|
|
mode = FunctionalTensorMode()
|
|
elif func_type == "functorch":
|
|
fn = torch.func.functionalize(fn)
|
|
else:
|
|
assert func_type == "no"
|
|
return fn, mode
|
|
|
|
@parametrize("func_type", ["no", "cpp", "python", "functorch"])
|
|
def test_while_loop_simple_functionalize_check_graph(self, func_type):
|
|
fn, inp = WHILE_LOOP_TESTS["simple_with_mutation"]
|
|
fn, mode = self._wrap_with_functionalize(fn, func_type)
|
|
mode = mode if mode is not None else contextlib.nullcontext()
|
|
with mode:
|
|
graphs = self._check_tracing(fn, inp)
|
|
if func_type == "no":
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, x_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (x_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x_1 = None
|
|
getitem = while_loop[0]; while_loop = None
|
|
return (getitem,)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add_ = torch.ops.aten.add_.Tensor(clone, 1); clone = None
|
|
add__1 = torch.ops.aten.add_.Tensor(add_, -1); add_ = None
|
|
sum_1 = torch.ops.aten.sum.default(add__1); add__1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add_ = torch.ops.aten.add_.Tensor(clone, 1); clone = None
|
|
add__1 = torch.ops.aten.add_.Tensor(add_, -1); add_ = None
|
|
add = torch.ops.aten.add.Tensor(add__1, 1); add__1 = None
|
|
return (add,)
|
|
""",
|
|
)
|
|
elif func_type == "python":
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = None
|
|
getitem = while_loop[0]; while_loop = None
|
|
return (getitem,)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
sum_1 = torch.ops.aten.sum.default(add_1); add_1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
add_2 = torch.ops.aten.add.Tensor(add_1, 1); add_1 = None
|
|
return (add_2,)
|
|
""",
|
|
)
|
|
else:
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].code.strip("\n"),
|
|
"""\
|
|
def forward(self, x_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (x_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x_1 = None
|
|
getitem = while_loop[0]; while_loop = None
|
|
return (getitem,)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
sum_1 = torch.ops.aten.sum.default(add_1); add_1 = None
|
|
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
|
|
return lt
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
|
|
add_2 = torch.ops.aten.add.Tensor(add_1, 1); add_1 = None
|
|
return (add_2,)
|
|
""",
|
|
)
|
|
|
|
@parametrize("func_type", ["no", "cpp", "python", "functorch"])
|
|
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
|
|
def test_while_loop_functionalize(self, func_type, while_loop_test):
|
|
# simple_with_linear doesn't work becaue parameters and buffers
|
|
# are not inputs so they're not wrapped by functionalization and tracing.
|
|
if while_loop_test not in ("simple_with_linear", "nested_with_linear"):
|
|
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
|
|
fn, mode = self._wrap_with_functionalize(fn, func_type)
|
|
mode = mode if mode is not None else contextlib.nullcontext()
|
|
with mode:
|
|
self._check_tracing(fn, inp)
|
|
|
|
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
|
|
def test_while_loop_tracing(self, while_loop_test):
|
|
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
|
|
allow_non_fake_inputs = (
|
|
False
|
|
if while_loop_test not in ("simple_with_linear", "nested_with_linear")
|
|
else True
|
|
)
|
|
self._check_tracing(fn, inp, allow_non_fake_inputs)
|
|
|
|
@parametrize("backend", ["eager", "aot_eager"])
|
|
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
|
|
def test_while_loop_compile(self, backend, while_loop_test):
|
|
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
|
|
self._check_compile(fn, inp, backend=backend)
|
|
|
|
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
|
|
def test_while_loop_simple_with_linear_compile_check_graph(self):
|
|
fn, inp = WHILE_LOOP_TESTS["simple_with_linear"]
|
|
from torch._dynamo.testing import EagerAndRecordGraphs
|
|
|
|
backend = EagerAndRecordGraphs()
|
|
torch.compile(fn, backend=backend)(*inp)
|
|
self.assertEqual(len(backend.graphs), 1)
|
|
gm = backend.graphs[0]
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, L_iter_ : torch.Tensor, L_x_ : torch.Tensor):
|
|
l_iter_ = L_iter_
|
|
l_x_ = L_x_
|
|
l__self___dec = self.L__self___dec
|
|
l__self___linear_weight = self.L__self___linear_weight
|
|
l__self___linear_bias = self.L__self___linear_bias
|
|
cond_fn_0 = self.cond_fn_0
|
|
body_fn_0 = self.body_fn_0
|
|
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (l_iter_, l_x_), (l__self___dec, l__self___linear_bias, l__self___linear_weight)); cond_fn_0 = body_fn_0 = l_iter_ = l_x_ = l__self___dec = l__self___linear_bias = l__self___linear_weight = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]; while_loop = None
|
|
return (getitem, getitem_1)""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.cond_fn_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_iter_, l_x_, l__self___dec_cond_fn, l__self___linear_bias_body_fn, l__self___linear_weight_body_fn):
|
|
sub = l_iter_ - l__self___dec_cond_fn; l_iter_ = l__self___dec_cond_fn = None
|
|
gt = sub > 0; sub = None
|
|
return gt""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.body_fn_0.code.strip(),
|
|
"""\
|
|
def forward(self, l_iter_, l_x_, l__self___dec_cond_fn, l__self___linear_bias_body_fn, l__self___linear_weight_body_fn):
|
|
sub = l_iter_ - 1; l_iter_ = None
|
|
linear = torch._C._nn.linear(l_x_, l__self___linear_weight_body_fn, l__self___linear_bias_body_fn); l_x_ = l__self___linear_weight_body_fn = l__self___linear_bias_body_fn = None
|
|
return (sub, linear)""", # noqa: B950
|
|
)
|
|
|
|
def test_while_loop_nested2_traced(self):
|
|
fn, inp = WHILE_LOOP_TESTS["nested2"]
|
|
graphs = self._check_tracing(fn, inp)
|
|
gm = graphs["symbolic"]
|
|
outer_body = gm.while_loop_body_graph_0
|
|
outer_cond = gm.while_loop_cond_graph_0
|
|
inner_body = outer_body.while_loop_body_graph_0
|
|
inner_cond = outer_body.while_loop_cond_graph_0
|
|
self.assertExpectedInline(
|
|
gm.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]
|
|
getitem_3 = while_loop[3]; while_loop = None
|
|
return (getitem, getitem_1, getitem_2, getitem_3)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
outer_body.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]
|
|
getitem_3 = while_loop[3]; while_loop = None
|
|
sub = torch.ops.aten.sub.Tensor(getitem, 1); getitem = None
|
|
clone = torch.ops.aten.clone.default(getitem_1); getitem_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(getitem_2, 2); getitem_2 = None
|
|
div = torch.ops.aten.div.Tensor(getitem_3, 2); getitem_3 = None
|
|
return (sub, clone, mul, div)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
outer_body.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
|
|
while_loop_body_graph_0 = self.while_loop_body_graph_0
|
|
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = None
|
|
getitem = while_loop[0]
|
|
getitem_1 = while_loop[1]
|
|
getitem_2 = while_loop[2]
|
|
getitem_3 = while_loop[3]; while_loop = None
|
|
sub = torch.ops.aten.sub.Tensor(getitem, 1); getitem = None
|
|
clone = torch.ops.aten.clone.default(getitem_1); getitem_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(getitem_2, 2); getitem_2 = None
|
|
div = torch.ops.aten.div.Tensor(getitem_3, 2); getitem_3 = None
|
|
return (sub, clone, mul, div)
|
|
""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
inner_body.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
|
|
sub = torch.ops.aten.sub.Tensor(arg1_1, 1); arg1_1 = None
|
|
add = torch.ops.aten.add.Tensor(arg2_1, 3.14); arg2_1 = None
|
|
sub_1 = torch.ops.aten.sub.Tensor(arg3_1, 2.71); arg3_1 = None
|
|
return (clone, sub, add, sub_1)
|
|
""",
|
|
)
|
|
self.assertExpectedInline(
|
|
inner_cond.code.strip("\n"),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
|
|
gt = torch.ops.aten.gt.Scalar(arg1_1, 0); arg1_1 = None
|
|
return gt
|
|
""",
|
|
)
|
|
|
|
def test_cond_nested_traced(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(x, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [x])
|
|
return x + z
|
|
|
|
def false_fn(x, _):
|
|
return x.cos()
|
|
|
|
def f(x, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [x, pred2])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
|
|
|
|
result_true_true = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(True)
|
|
) # True + True -> x * x
|
|
result_true_false = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(False)
|
|
) # True + True -> x + x
|
|
result_false_true = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(True)
|
|
) # False + either -> cos
|
|
result_false_false = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
) # False + either -> cos
|
|
|
|
self.assertNotEqual(result_true_true, result_true_false)
|
|
self.assertFalse(torch.allclose(result_false_true, result_true_true))
|
|
|
|
self.assertEqual(result_false_true, result_false_false)
|
|
|
|
self.assertEqual(result_true_true, (x * x) + x)
|
|
self.assertEqual(result_true_false, x + x + x)
|
|
|
|
self.assertEqual(result_false_true, torch.cos(x))
|
|
|
|
graph = make_fx(f, tracing_mode="symbolic")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
self.assertEqual(
|
|
graph(x, torch.tensor(True), torch.tensor(True)),
|
|
f(x, torch.tensor(True), torch.tensor(True)),
|
|
)
|
|
|
|
def test_cond_functionalized_hah(self):
|
|
def true_fn(x):
|
|
y = x.sin()
|
|
y.add_(4)
|
|
return x.sin().max() + y.sum()
|
|
|
|
def false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
all_ops_in_true_branch = []
|
|
for node in graph_module.true_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
all_ops_in_true_branch.append(node.target)
|
|
|
|
self.assertFalse(any(op._schema.is_mutable for op in all_ops_in_true_branch))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
def test_cond_accepts_torch_function_as_inputs(self):
|
|
a = torch.randn(3, 4)
|
|
b = torch.randn(3, 4)
|
|
|
|
def f(a, b):
|
|
return cond(a.sum() > 0, torch.add, torch.mul, (a, b))
|
|
|
|
gm = self._check_tracing(f, (a, b))["symbolic"]
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, a_1, b_1):
|
|
sum_1 = torch.ops.aten.sum.default(a_1)
|
|
gt = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
conditional = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [a_1, b_1]); gt = true_graph_0 = false_graph_0 = a_1 = b_1 = None
|
|
getitem = conditional[0]; conditional = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (add,)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.false_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (mul,)""",
|
|
)
|
|
|
|
def test_cond_retrace_functionalized(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
def f(x):
|
|
return cond(x.all(), true_fn, false_fn, (x,))
|
|
|
|
inp = torch.ones(1, 2)
|
|
gm_non_functional = make_fx(f, tracing_mode="real")(inp)
|
|
gm_functional = make_fx(
|
|
torch.func.functionalize(gm_non_functional), tracing_mode="real"
|
|
)(inp)
|
|
self.assertEqual(gm_functional(torch.zeros(1, 2)), f(torch.zeros(1, 2)))
|
|
|
|
def test_cond_subgraph_same_shape_env_as_parent(self):
|
|
def true_fn(x):
|
|
return x.sin() + 10
|
|
|
|
def false_fn(x):
|
|
return x.cos() - 20
|
|
|
|
def f(x, pred):
|
|
y = cond(pred, true_fn, false_fn, [x])
|
|
z = torch.add(y, y)
|
|
return z
|
|
|
|
symbolic_traced_graph = self._check_tracing(f, (torch.ones(4), True))[
|
|
"symbolic"
|
|
]
|
|
graph_shape_env = symbolic_traced_graph.shape_env
|
|
|
|
def _node_shape_env_iter(gm):
|
|
for node in symbolic_traced_graph.graph.nodes:
|
|
if node.op == "call_function":
|
|
val = node.meta.get("val")
|
|
if isinstance(val, tuple):
|
|
for v in val:
|
|
yield v.fake_mode.shape_env
|
|
else:
|
|
yield val.fake_mode.shape_env
|
|
|
|
for shape_env in _node_shape_env_iter(symbolic_traced_graph):
|
|
self.assertTrue(shape_env is graph_shape_env)
|
|
|
|
for shape_env in _node_shape_env_iter(symbolic_traced_graph.true_graph_0):
|
|
self.assertTrue(shape_env is graph_shape_env)
|
|
|
|
for shape_env in _node_shape_env_iter(symbolic_traced_graph.false_graph_0):
|
|
self.assertTrue(shape_env is graph_shape_env)
|
|
|
|
def test_cond_functionalized_nested(self):
|
|
def true_true_fn(x):
|
|
y = x.cos()
|
|
y.add_(4)
|
|
return x.sin().max() + y.sin().max()
|
|
|
|
def true_false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def true_fn(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_true_fn, true_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return x.sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
gm_true_true_branch = graph_module.true_graph_0.true_graph_0
|
|
|
|
graph_module1 = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
self.assertEqual(graph_module1(*example_inputs), f(*example_inputs))
|
|
|
|
all_ops = []
|
|
for node in gm_true_true_branch.graph.nodes:
|
|
if node.op == "call_function":
|
|
all_ops.append(node.target)
|
|
|
|
self.assertFalse(any(op._schema.is_mutable for op in all_ops))
|
|
|
|
def test_cond_functionalized_data_dependent_pred(self):
|
|
def true_fn(x):
|
|
return x.sin().sum()
|
|
|
|
def false_fn(x):
|
|
return x.cos().sum()
|
|
|
|
def f(x):
|
|
pred = x.nonzero().shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
graph_module = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
|
|
|
|
def test_cond_functionalized_input_mutation_on_true_branch(self):
|
|
def true_fn(x):
|
|
view_x = x.view(x.shape)
|
|
view_x.add_(1)
|
|
return view_x.sin().sum()
|
|
|
|
def false_fn(x):
|
|
return x.cos().sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
|
|
def test_cond_functionalized_input_mutation_on_false_branch(self):
|
|
def true_fn(x):
|
|
return x.sin().sum()
|
|
|
|
def false_fn(x):
|
|
view_x = x.view(x.shape)
|
|
view_x.add_(1)
|
|
return view_x.cos().sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(5, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
|
|
def test_cond_functionalized_output_alias_input(self):
|
|
def true_fn(x):
|
|
return x
|
|
|
|
def false_fn(x):
|
|
view_x = x.view(x.shape)
|
|
return view_x
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(5, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"One of torch.cond branch might be aliasing",
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"One of torch.cond branch might be aliasing",
|
|
):
|
|
make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
|
|
def test_cond_functionalized_nested_input_mutation(self):
|
|
def true_true_fn(x):
|
|
x.add_(4)
|
|
return x.sin().max()
|
|
|
|
def true_false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def true_fn(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_true_fn, true_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return x.sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_inputs = (torch.ones(4, 5),)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
|
|
def test_cond_functionalized_nested_input_mutation_with_aot_func(self):
|
|
def true_true_fn(x):
|
|
x.add_(4)
|
|
return x.sin().max()
|
|
|
|
def true_false_fn(x):
|
|
return x.cos().min()
|
|
|
|
def true_fn(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_true_fn, true_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return x.sum()
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 1
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_input = torch.ones(4, 5)
|
|
try:
|
|
example_input_func = to_fun_old(example_input)
|
|
torch._enable_functionalization(reapply_views=False)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
f(example_input_func)
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(f)(example_input_func)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
return func(*args, **kwargs)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "One of torch.cond branch"
|
|
):
|
|
make_fx(f_wrapper(f))(example_input_func)
|
|
|
|
def test_cond_functionalized_input_aliasing_with_aot_func(self):
|
|
def true_fn(x):
|
|
return x
|
|
|
|
def false_fn(x):
|
|
view_x = x.view(x.shape)
|
|
return view_x
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_input = torch.ones(5, 5)
|
|
try:
|
|
example_input_func = to_fun_old(example_input)
|
|
torch._enable_functionalization(reapply_views=False)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"One of torch.cond branch might be aliasing",
|
|
):
|
|
f(example_input_func)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
func_args = pytree.tree_map(
|
|
lambda x: torch._to_functional_tensor(x)
|
|
if isinstance(x, torch.Tensor)
|
|
else x,
|
|
args,
|
|
)
|
|
func_kwargs = pytree.tree_map(
|
|
lambda x: torch._to_functional_tensor(x)
|
|
if isinstance(x, torch.Tensor)
|
|
else x,
|
|
kwargs,
|
|
)
|
|
return func(*func_args, **func_kwargs)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException,
|
|
"One of torch.cond branch might be aliasing",
|
|
):
|
|
make_fx(f_wrapper(f))(example_input)
|
|
|
|
def test_cond_functionalized_aot_func_check_functional(self):
|
|
def true_fn(x):
|
|
return x.cos()
|
|
|
|
def false_fn(x):
|
|
y = x.sin()
|
|
y.add_(5)
|
|
return y
|
|
|
|
def f(x):
|
|
pred = x.shape[0] == 4
|
|
return cond(pred, true_fn, false_fn, [x])
|
|
|
|
example_input = torch.ones(5, 5)
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
func_args = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
args,
|
|
)
|
|
func_kwargs = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
kwargs,
|
|
)
|
|
return pytree.tree_map(
|
|
from_fun_old, func(*func_args, **func_kwargs)
|
|
)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
result_gm = make_fx(f_wrapper(f))(example_input)
|
|
for node in result_gm.true_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
|
|
for node in result_gm.false_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
|
|
self.assertEqual(result_gm(torch.ones(5, 5)), f(torch.ones(5, 5)))
|
|
|
|
def test_cond_nested_traced_other_inputs(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(k, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [k])
|
|
return torch.add(torch.tensor([0.25, 0.25]), z)
|
|
|
|
def false_fn(k, _):
|
|
return k.cos()
|
|
|
|
def f(k, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [k, pred2])
|
|
|
|
x = torch.tensor([0.5, 0.5])
|
|
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
|
|
|
|
a = torch.tensor([1.0, 1.0])
|
|
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
|
|
|
|
b = torch.tensor([2.0, 2.0])
|
|
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
|
|
|
|
def test_cond_nested_traced_multi(self):
|
|
def true_a(y):
|
|
return y * y
|
|
|
|
def false_a(y):
|
|
return y + y
|
|
|
|
def true_b(y, z):
|
|
return y + z
|
|
|
|
def false_b(y, z):
|
|
return y * z
|
|
|
|
def f(x, pred, pred2):
|
|
a_out = cond(pred, true_a, false_a, [x])
|
|
b_out = cond(pred2, true_b, false_b, [x, x])
|
|
return a_out + b_out
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
|
|
|
|
self.assertExpectedInline(
|
|
graph.code.strip(),
|
|
"""\
|
|
def forward(self, x_1, pred_1, pred2_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
conditional = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, [x_1]); pred_1 = true_graph_0 = false_graph_0 = None
|
|
getitem = conditional[0]; conditional = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
conditional_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, [x_1]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
|
|
getitem_1 = conditional_1[0]; conditional_1 = None
|
|
add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
|
|
return add""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graph.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
|
|
return (mul,)""",
|
|
)
|
|
|
|
def test_raise_error_on_mismatch_type_size(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return (x, x)
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
make_fx(f)(x, torch.tensor(False))
|
|
|
|
def test_raise_error_on_mismatch_tensor_size(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return torch.zeros([10, 10])
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
make_fx(f)(x, torch.tensor(False))
|
|
|
|
def test_cond_traced_not_nested_fake_tensor(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return x.cos()
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
|
|
result_true = graph.forward(x, torch.tensor(True))
|
|
result_false = graph.forward(x, torch.tensor(False))
|
|
self.assertFalse(torch.allclose(result_true, result_false))
|
|
self.assertEqual(result_true, torch.sin(x))
|
|
self.assertEqual(result_false, torch.cos(x))
|
|
|
|
def test_cond_nested_traced_fake_tensor(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(x, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [x])
|
|
return x + z
|
|
|
|
def false_fn(x, _):
|
|
return x.cos()
|
|
|
|
def f(x, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [x, pred2])
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f, tracing_mode="fake")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
|
|
result_true_true = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(True)
|
|
) # True + True -> x * x
|
|
result_true_false = graph.forward(
|
|
x, torch.tensor(True), torch.tensor(False)
|
|
) # True + True -> x + x
|
|
result_false_true = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(True)
|
|
) # False + either -> cos
|
|
result_false_false = graph.forward(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
) # False + either -> cos
|
|
|
|
self.assertNotEqual(result_true_true, result_true_false)
|
|
self.assertFalse(torch.allclose(result_false_true, result_true_true))
|
|
|
|
self.assertEqual(result_false_true, result_false_false)
|
|
|
|
self.assertEqual(result_true_true, (x * x) + x)
|
|
self.assertEqual(result_true_false, x + x + x)
|
|
|
|
self.assertEqual(result_false_true, torch.cos(x))
|
|
|
|
def test_cond_nested_traced_other_inputs_fake_tensor(self):
|
|
def true_nested(y):
|
|
return y * y
|
|
|
|
def false_nested(y):
|
|
return y + y
|
|
|
|
def true_fn(k, pred2):
|
|
z = cond(pred2, true_nested, false_nested, [k])
|
|
return torch.add(torch.tensor([0.25, 0.25]), z)
|
|
|
|
def false_fn(k, _):
|
|
return k.cos()
|
|
|
|
def f(k, pred, pred2):
|
|
return cond(pred, true_fn, false_fn, [k, pred2])
|
|
|
|
x = torch.tensor([0.5, 0.5])
|
|
graph = make_fx(f, tracing_mode="fake")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
|
|
a = torch.tensor([1.0, 1.0])
|
|
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
|
|
|
|
b = torch.tensor([2.0, 2.0])
|
|
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
|
|
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
|
|
|
|
def test_cond_nested_traced_multi_fake_tensor(self):
|
|
def true_a(y):
|
|
return y * y
|
|
|
|
def false_a(y):
|
|
return y + y
|
|
|
|
def true_b(y, z):
|
|
return y + z
|
|
|
|
def false_b(y, z):
|
|
return y * z
|
|
|
|
def f(x, pred, pred2):
|
|
a_out = cond(pred, true_a, false_a, [x])
|
|
b_out = cond(pred2, true_b, false_b, [x, x])
|
|
return a_out + b_out
|
|
|
|
x = torch.randn(4)
|
|
graph = make_fx(f, tracing_mode="fake")(
|
|
x, torch.tensor(False), torch.tensor(False)
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
graph.code.strip(),
|
|
"""\
|
|
def forward(self, x_1, pred_1, pred2_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
conditional = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, [x_1]); pred_1 = true_graph_0 = false_graph_0 = None
|
|
getitem = conditional[0]; conditional = None
|
|
true_graph_1 = self.true_graph_1
|
|
false_graph_1 = self.false_graph_1
|
|
conditional_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, [x_1]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
|
|
getitem_1 = conditional_1[0]; conditional_1 = None
|
|
add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
|
|
return add""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
graph.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
|
|
return (mul,)""",
|
|
)
|
|
|
|
def test_raise_error_on_mismatch_type_size_fake_tensor(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return (x, x)
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
|
|
|
|
def test_raise_error_on_mismatch_tensor_size_fake_tensor(self):
|
|
def true_fn(x):
|
|
return x.sin()
|
|
|
|
def false_fn(x):
|
|
return torch.zeros([10, 10])
|
|
|
|
def f(x, y):
|
|
return cond(y, true_fn, false_fn, [x])
|
|
|
|
x = torch.randn(4)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UncapturedHigherOrderOpError,
|
|
"Cond doesn't work unless it is captured completely with torch.compile",
|
|
):
|
|
make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
|
|
|
|
def check_map_count(self, gm, op_count):
|
|
i = 0
|
|
for m in gm.modules():
|
|
for node in m.graph.nodes:
|
|
if (
|
|
node.op == "call_function"
|
|
and node.target == torch.ops.higher_order.map_impl
|
|
):
|
|
i += 1
|
|
self.assertEqual(i, op_count)
|
|
|
|
def test_tracing_map_real(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def g(xs, y):
|
|
return control_flow.map(f, xs, y)
|
|
|
|
gm = make_fx(g, tracing_mode="real")(torch.ones(3, 2, 2), torch.ones(2))
|
|
x = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_symbolic_simple(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def g(xs, y):
|
|
return control_flow.map(f, xs, y)
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(torch.ones(3, 2, 4), torch.ones(4))
|
|
x = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_symbolic_list(self):
|
|
def f(x, y):
|
|
return [x[0][0] + y, x[1] * y]
|
|
|
|
def g(xs, y, z):
|
|
out = control_flow.map(f, xs, y)
|
|
return out[0] + z, out[1] * z
|
|
|
|
example_x = [[torch.ones(3, 4, 5)], torch.ones(3, 4, 5)]
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
example_x, torch.ones(5), torch.ones(5)
|
|
)
|
|
x = [[torch.randn(4, 5, 6)], torch.ones(4, 5, 6)]
|
|
y = torch.randn(6)
|
|
z = torch.ones(6)
|
|
res = gm(x, y, z)
|
|
self.assertEqual(res, g(x, y, z))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_symbolic_dict(self):
|
|
def f(x, y):
|
|
return {"d": x["b"]["a"] + y, "e": x["c"] * y}
|
|
|
|
def g(xs, y, z):
|
|
out = control_flow.map(f, xs, y)
|
|
return {"f": out["d"] + z, "g": out["e"] * z}
|
|
|
|
example_x = {"b": {"a": torch.ones(3, 4, 5)}, "c": torch.ones(3, 4, 5)}
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
example_x, torch.ones(5), torch.ones(5)
|
|
)
|
|
x = {"b": {"a": torch.randn(4, 5, 6)}, "c": torch.ones(4, 5, 6)}
|
|
y = torch.randn(6)
|
|
z = torch.ones(6)
|
|
res = gm(x, y, z)
|
|
self.assertEqual(res, g(x, y, z))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_tracing_map_autograd_symbolic_simple(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def g(xs, y):
|
|
out = control_flow.map(f, xs, y)
|
|
return torch.autograd.grad(out, (xs, y), torch.ones_like(out))
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
torch.ones(3, 4, 5, requires_grad=True), torch.ones(5, requires_grad=True)
|
|
)
|
|
x = torch.randn(4, 5, 6, requires_grad=True)
|
|
y = torch.randn(6, requires_grad=True)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_tracing_map_autograd_symbolic_list(self):
|
|
import torch.utils._pytree as pytree
|
|
|
|
def f(x, y):
|
|
return [x[0].cos() + y.sin(), x[1].sin() * y.cos()]
|
|
|
|
def g(xs, y):
|
|
out = control_flow.map(f, xs, y)
|
|
flat_out = pytree.tree_leaves(out)
|
|
flat_inp = pytree.tree_leaves((xs, y))
|
|
requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad]
|
|
return torch.autograd.grad(
|
|
flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]
|
|
)
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
[torch.ones(3, 4, 5), torch.ones(3, 4, 5, requires_grad=True)],
|
|
torch.ones(5, requires_grad=True),
|
|
)
|
|
x = [torch.randn(4, 5, 6), torch.ones(4, 5, 6, requires_grad=True)]
|
|
y = torch.randn(6, requires_grad=True)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_tracing_map_autograd_symbolic_dict(self):
|
|
def f(x, y):
|
|
return [x["a"] + y, x["b"] * y]
|
|
|
|
def g(xs, y):
|
|
out = control_flow.map(f, xs, y)
|
|
flat_out = pytree.tree_leaves(out)
|
|
flat_inp = pytree.tree_leaves((xs, y))
|
|
requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad]
|
|
return torch.autograd.grad(
|
|
flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]
|
|
)
|
|
|
|
traced_x = {
|
|
"a": torch.ones(3, 4, 5, requires_grad=True),
|
|
"b": torch.ones(3, 4, 5, requires_grad=True),
|
|
}
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
traced_x, torch.ones(5, requires_grad=True)
|
|
)
|
|
x = {
|
|
"a": torch.randn(4, 5, 6, requires_grad=True),
|
|
"b": torch.ones(4, 5, 6, requires_grad=True),
|
|
}
|
|
y = torch.randn(6, requires_grad=True)
|
|
res = gm(x, y)
|
|
self.assertEqual(res, g(x, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_tracing_map_autograd_aot_functionalized(self):
|
|
def inner(x, y):
|
|
z = x - 1
|
|
z.add_(1)
|
|
return z * y
|
|
|
|
def f(xs, y):
|
|
res = control_flow.map(inner, xs, y)
|
|
grads = torch.autograd.grad(res, (xs, y), torch.ones_like(res))
|
|
return grads
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
return pytree.tree_map(from_fun_old, func(*args, **kwargs))
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
example_inputs = (
|
|
torch.ones(3, 2, 4, requires_grad=True),
|
|
torch.ones(2, 4, requires_grad=True),
|
|
)
|
|
gm = make_fx(f, tracing_mode="symbolic")(*example_inputs)
|
|
fgm = make_fx(f_wrapper(f), tracing_mode="symbolic")(*example_inputs)
|
|
xs = torch.ones(3, 4, 5, requires_grad=True)
|
|
y = torch.ones(4, 5, requires_grad=True)
|
|
|
|
self.assertEqual(gm(xs, y), f(xs, y))
|
|
|
|
def count_mutable(gm):
|
|
c = 0
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function":
|
|
if node.target == torch.ops.higher_order.map_impl:
|
|
c += count_mutable(getattr(gm, str(node.args[0])))
|
|
elif schema := getattr(node.target, "_schema", None):
|
|
c += int(schema.is_mutable)
|
|
return c
|
|
|
|
self.assertEqual(count_mutable(fgm), 0)
|
|
# One for forward, one for recomputation logic in backward
|
|
self.assertEqual(count_mutable(gm), 2)
|
|
|
|
def test_map_functionalized(self):
|
|
def map_fn(x, y):
|
|
z = x + y
|
|
z.add_(4)
|
|
return z
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
functional_f = torch.func.functionalize(f)
|
|
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
|
|
|
|
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
|
|
self.assertEqual(gm(*example_inputs), f(*example_inputs))
|
|
|
|
gm = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
|
|
*example_inputs
|
|
)
|
|
self.assertEqual(gm(*example_inputs), f(*example_inputs))
|
|
|
|
for node in gm.body_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_map_functionalized_aot_func(self):
|
|
def map_fn(x, y):
|
|
z = x + y
|
|
z.add_(4)
|
|
return z
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
return pytree.tree_map(from_fun_old, func(*args, **kwargs))
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
|
|
gm = make_fx(f_wrapper(f))(*example_inputs)
|
|
|
|
for node in gm.body_graph_0.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(not node.target._schema.is_mutable)
|
|
|
|
self.assertEqual(gm(*example_inputs), f(*example_inputs))
|
|
|
|
def test_map_functionalized_arg_mutation(self):
|
|
def map_fn(x, y):
|
|
y.add_(4)
|
|
return x + y
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "torch.map is mutating the input!"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
def test_map_functionalized_elem_mutation(self):
|
|
def map_fn(x, y):
|
|
x.add_(4)
|
|
return x + y
|
|
|
|
def f(xs, y):
|
|
return control_flow.map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "torch.map is mutating the input!"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
def test_cond_autograd_fail(self):
|
|
def true_fn(x):
|
|
return x.cos()
|
|
|
|
def false_fn(x):
|
|
return x.sin()
|
|
|
|
def f(x, y):
|
|
return control_flow.cond(x.shape[0] > 4, true_fn, false_fn, [y])
|
|
|
|
example_inputs = (
|
|
torch.ones(3, 2, 4, requires_grad=True),
|
|
torch.ones(4, requires_grad=True),
|
|
)
|
|
with self.assertRaisesRegex(RuntimeError, "Autograd not implemented for cond"):
|
|
f(*example_inputs).sum().backward()
|
|
|
|
# Ensure no error is thrown when not running backward
|
|
f(*example_inputs)
|
|
|
|
def test_map_functionalized_elem_alias(self):
|
|
def map_fn(x):
|
|
x.view(x.shape)
|
|
return x
|
|
|
|
def f(xs):
|
|
return control_flow.map(map_fn, xs)
|
|
|
|
example_inputs = (torch.ones(3, 2, 4),)
|
|
functional_f = torch.func.functionalize(f)
|
|
with self.assertRaisesRegex(
|
|
UnsupportedAliasMutationException, "torch.map is aliasing the input!"
|
|
):
|
|
functional_f(*example_inputs)
|
|
|
|
def test_nested_map_cond_real(self):
|
|
def true_fn(x, y):
|
|
return x * y
|
|
|
|
def false_fn(x, y):
|
|
return x + y
|
|
|
|
def f(x, pred, y):
|
|
return cond(pred, true_fn, false_fn, [x, y])
|
|
|
|
def g(pred, xs, y):
|
|
return control_flow.map(f, xs, pred, y)
|
|
|
|
gm = make_fx(g, tracing_mode="real")(
|
|
torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
|
|
)
|
|
pred = torch.tensor(False)
|
|
x = torch.randn(3, 2, 4)
|
|
y = torch.randn(4)
|
|
res = gm(pred, x, y)
|
|
self.assertEqual(res, g(pred, x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_nested_map_cond_symbolic(self):
|
|
def true_fn(x, y):
|
|
return x * y
|
|
|
|
def false_fn(x, y):
|
|
return x + y
|
|
|
|
def f(x, pred, y):
|
|
return cond(pred, true_fn, false_fn, [x, y])
|
|
|
|
def g(pred, xs, y):
|
|
return control_flow.map(f, xs, pred, y)
|
|
|
|
gm = make_fx(g, tracing_mode="symbolic")(
|
|
torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
|
|
)
|
|
pred = torch.tensor(False)
|
|
x = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(pred, x, y)
|
|
self.assertEqual(res, g(pred, x, y))
|
|
self.check_map_count(gm, 1)
|
|
|
|
def test_nested_cond_map_cond_symbolic(self):
|
|
def true_fn(x, y):
|
|
return x * y
|
|
|
|
def false_fn(x, y):
|
|
return x + y
|
|
|
|
def f(x, pred, y):
|
|
return cond(pred, true_fn, false_fn, [x, y])
|
|
|
|
def g(pred, xs, y):
|
|
return control_flow.map(f, xs, pred, y)
|
|
|
|
def main_true_fn(pred, xs, y):
|
|
return g(pred, xs, y) * 2
|
|
|
|
def main_false_fn(pred, xs, y):
|
|
return g(pred, xs, y) + 1
|
|
|
|
def main(p, pred, xs, y):
|
|
return cond(p, main_true_fn, main_false_fn, [pred, xs, y])
|
|
|
|
gm = make_fx(main, tracing_mode="symbolic")(
|
|
torch.tensor(True), torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
|
|
)
|
|
p = torch.tensor(False)
|
|
pred = torch.tensor(False)
|
|
xs = torch.randn(3, 2, 2)
|
|
y = torch.randn(2)
|
|
res = gm(p, pred, xs, y)
|
|
self.assertEqual(res, main(p, pred, xs, y))
|
|
self.check_map_count(gm, 2)
|
|
|
|
def test_cond_with_sym_pred(self):
|
|
def true_fn(x):
|
|
return x + x
|
|
|
|
def false_fn(x):
|
|
return x * x
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 2, 1))
|
|
# The symbols in make_fx's shape_env should not be specialized.
|
|
self.assertEqual(len(gm.shape_env.guards), 0)
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
|
|
eq = sym_size_int == 4; sym_size_int = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
conditional = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1]); eq = true_graph_0 = false_graph_0 = x_1 = None
|
|
getitem = conditional[0]; conditional = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
|
|
# We expect the traced graph module to work even if input size changes.
|
|
x = torch.ones(4, 3, 2)
|
|
self.assertEqual(gm(x), true_fn(x))
|
|
self.assertEqual(foo(x), true_fn(x))
|
|
|
|
def _check_closure_correctly_lifted(self, f, *, args, exp_res, exp_arg_num):
|
|
assert isinstance(args, (tuple, list))
|
|
self.assertEqual(f(*args), exp_res)
|
|
gm = make_fx(f)(*args)
|
|
self.assertEqual(gm(*args), exp_res)
|
|
|
|
def cnt_placeholder(gm):
|
|
return len([node for node in gm.graph.nodes if node.op == "placeholder"])
|
|
|
|
placeholder_cnts = [cnt_placeholder(mod) for mod in gm.children()]
|
|
self.assertTrue(all(cnt == exp_arg_num for cnt in placeholder_cnts))
|
|
|
|
def _check_closure_correctly_lifted_with_mutation(
|
|
self, f, closures_to_be_mutated, *, args, exp_arg_num
|
|
):
|
|
exp_res = f(*args)
|
|
self._check_closure_correctly_lifted(
|
|
f, args=args, exp_res=exp_res, exp_arg_num=exp_arg_num
|
|
)
|
|
|
|
for closure in closures_to_be_mutated:
|
|
closure.add(-1)
|
|
new_exp_res = f(*args)
|
|
|
|
self._check_closure_correctly_lifted(
|
|
f, args=args, exp_res=new_exp_res, exp_arg_num=exp_arg_num
|
|
)
|
|
|
|
def test_cond_with_tensor_closure(self):
|
|
a = torch.ones(2, 3)
|
|
b = torch.ones(2, 3) + 1
|
|
|
|
def true_fn(x):
|
|
return x + a
|
|
|
|
def false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
# expected branches takes [x, a, b] as input
|
|
inp = torch.randn(2, 3)
|
|
self._check_closure_correctly_lifted_with_mutation(
|
|
foo, (a, b), args=(inp,), exp_arg_num=3
|
|
)
|
|
|
|
def test_cond_with_tensor_closure_graph_module(self):
|
|
a = torch.ones(2, 3)
|
|
b = torch.ones(2, 3) + 1
|
|
|
|
def true_fn(x):
|
|
return x + a
|
|
|
|
def false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
# expected branches takes [x, a, b] as input
|
|
inp = torch.randn(2, 3)
|
|
|
|
gm = make_fx(foo)(inp)
|
|
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
_tensor_constant0 = self._tensor_constant0
|
|
_tensor_constant1 = self._tensor_constant1
|
|
conditional = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [x_1, _tensor_constant0, _tensor_constant1]); true_graph_0 = false_graph_0 = x_1 = _tensor_constant0 = _tensor_constant1 = None
|
|
getitem = conditional[0]; conditional = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
def test_cond_with_module_param_closure(self):
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.register_parameter(
|
|
"param", torch.nn.Parameter(torch.ones(2, 3), requires_grad=False)
|
|
)
|
|
self.register_buffer("buffer", torch.ones(2, 3) + 1)
|
|
|
|
my_mode = Mod()
|
|
|
|
def true_fn(x):
|
|
return x + my_mode.param
|
|
|
|
def false_fn(x):
|
|
return x + my_mode.buffer
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
# expected both branches takes (x, param, buffer)
|
|
self._check_closure_correctly_lifted_with_mutation(
|
|
foo, (my_mode.param, my_mode.buffer), args=(inp,), exp_arg_num=3
|
|
)
|
|
|
|
def test_cond_with_module_python_scalar_closure(self):
|
|
def foo(x):
|
|
a = torch.ones(1, 1)
|
|
b = 1
|
|
|
|
def true_fn(x):
|
|
return x + a
|
|
|
|
def false_fn(x):
|
|
return x + b
|
|
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
res = inp + 1
|
|
# python scalar b is not lifted as input, so both branches take (x, a)
|
|
self._check_closure_correctly_lifted(
|
|
foo, args=(inp,), exp_res=res, exp_arg_num=2
|
|
)
|
|
|
|
def test_cond_nested_with_closure(self):
|
|
a = torch.ones(1, 1)
|
|
b = torch.ones(1, 1) + 1
|
|
|
|
def inner_true_fn(x):
|
|
return x + a
|
|
|
|
def inner_false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
def true_fn(x):
|
|
return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x])
|
|
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
# For top-level cond, it take 3 arguments (x, a, b). Dynamo should
|
|
# realize that the nonlocal variables are same for the true and false
|
|
# branches, so it should de-dupe them.
|
|
# For second-level conds, it takes (x, a, b)
|
|
self._check_closure_correctly_lifted_with_mutation(
|
|
foo, (a, b), args=(inp,), exp_arg_num=3
|
|
)
|
|
|
|
def test_cond_nested_with_closure_graph_module(self):
|
|
a = torch.ones(1, 1)
|
|
b = torch.ones(1, 1) + 1
|
|
|
|
def inner_true_fn(x):
|
|
return x + a
|
|
|
|
def inner_false_fn(x):
|
|
return x + b
|
|
|
|
def foo(x):
|
|
def true_fn(x):
|
|
return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x])
|
|
|
|
def false_fn(x):
|
|
return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x])
|
|
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
def test_map_unfunc_boolean_tensor_for_nested_map_cond(self):
|
|
def map_fn(pred, x):
|
|
def fn(x, pred):
|
|
return control_flow.cond(pred, lambda x: x * 2, lambda x: x / 2, (x,))
|
|
|
|
return control_flow.map(fn, x, pred)
|
|
|
|
def f_wrapper(func):
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
torch._enable_functionalization(reapply_views=False)
|
|
try:
|
|
func_args = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
args,
|
|
)
|
|
func_kwargs = pytree.tree_map(
|
|
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
|
|
kwargs,
|
|
)
|
|
return pytree.tree_map(
|
|
from_fun_old, func(*func_args, **func_kwargs)
|
|
)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
|
|
return wrapper
|
|
|
|
gm = make_fx(f_wrapper(map_fn))(
|
|
torch.tensor(True), torch.ones([2, 3], requires_grad=False)
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, pred_1, x_1):
|
|
body_graph_0 = self.body_graph_0
|
|
map_impl = torch.ops.higher_order.map_impl(body_graph_0, [x_1], [pred_1]); body_graph_0 = x_1 = pred_1 = None
|
|
getitem = map_impl[0]; map_impl = None
|
|
return getitem""",
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.body_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
conditional = torch.ops.higher_order.cond(arg1_1, true_graph_0, false_graph_0, [arg0_1]); arg1_1 = true_graph_0 = false_graph_0 = arg0_1 = None
|
|
getitem = conditional[0]; conditional = None
|
|
return [getitem]""", # noqa: B950
|
|
)
|
|
|
|
def test_cond_make_fx_preserve_stack_trace_for_nodes_in_subgraph(self):
|
|
def true_fn(x):
|
|
return x + x.cos()
|
|
|
|
def false_fn(x):
|
|
return x * x.sin()
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, (x,))
|
|
|
|
inp = torch.randn([4, 3])
|
|
gm, _ = torch._dynamo.export(foo)(inp)
|
|
|
|
def run_with_interpreter(*args):
|
|
with torch.fx.traceback.preserve_node_meta():
|
|
return torch.fx.Interpreter(gm).run(*args)
|
|
|
|
new_gm = make_fx(run_with_interpreter)(inp)
|
|
|
|
checked_ops = {"add", "mul", "sin", "cos"}
|
|
checked_meta = ["source_fn_stack", "stack_trace"]
|
|
all_source_fns = collect_meta_for_filtered_nodes(gm, checked_ops, checked_meta)
|
|
new_source_fns = collect_meta_for_filtered_nodes(
|
|
new_gm, checked_ops, checked_meta
|
|
)
|
|
self.assertEqual(all_source_fns, new_source_fns)
|
|
|
|
@unittest.skipIf(
|
|
TEST_WITH_TORCHDYNAMO,
|
|
"triggers cache limit for foo and changes unique_graphs count.",
|
|
)
|
|
def test_cond_no_dynamo_cache_limit(self):
|
|
torch._dynamo.reset()
|
|
counters = torch._dynamo.utils.counters
|
|
counters.clear()
|
|
|
|
def foo(x, true_fn, false_fn):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, (x,))
|
|
|
|
inp = torch.ones(3, 4)
|
|
exp_out = inp.sin()
|
|
iter_n = torch._dynamo.config.cache_size_limit + 1
|
|
|
|
# Need this because Dynamo checks lambda code ID not object itself.
|
|
def make_dummy_fn(op):
|
|
exec(f"temp = lambda x: x.{op}()")
|
|
return locals()["temp"]
|
|
|
|
for _ in range(iter_n):
|
|
# each lambda has a different object id thus fails the guard
|
|
self.assertEqual(
|
|
foo(inp, make_dummy_fn("cos"), make_dummy_fn("sin")), exp_out
|
|
)
|
|
|
|
# each iteration captures a cond and a getitem from the tuple output
|
|
self.assertEqual(counters["stats"]["calls_captured"], iter_n * 2)
|
|
self.assertEqual(counters["stats"]["unique_graphs"], iter_n)
|
|
|
|
def test_cond_with_consecutive_make_fx_symbolic(self):
|
|
def true_fn(x):
|
|
return x - x.cos()
|
|
|
|
def false_fn(x):
|
|
return x + x.sin()
|
|
|
|
def foo(x):
|
|
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
|
|
|
|
inps = (torch.ones(3, 4), torch.ones(3, 5), torch.ones(5, 4), torch.ones(5, 3))
|
|
for inp in inps:
|
|
gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 4))
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
|
|
eq = sym_size_int == 4; sym_size_int = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
conditional = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1]); eq = true_graph_0 = false_graph_0 = x_1 = None
|
|
getitem = conditional[0]; conditional = None
|
|
return getitem""", # noqa: B950
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
gm.true_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
cos = torch.ops.aten.cos.default(arg0_1)
|
|
sub = torch.ops.aten.sub.Tensor(arg0_1, cos); arg0_1 = cos = None
|
|
return (sub,)""",
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
gm.false_graph_0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
sin = torch.ops.aten.sin.default(arg0_1)
|
|
add = torch.ops.aten.add.Tensor(arg0_1, sin); arg0_1 = sin = None
|
|
return (add,)""",
|
|
)
|
|
|
|
def _create_test_fns_for_cond(
|
|
self, pred, inner_most_fn, operands, closure_list, nested_level
|
|
):
|
|
if nested_level == 0:
|
|
if len(closure_list) > 0:
|
|
|
|
def true_fn(*operands):
|
|
return inner_most_fn(*operands) + inner_most_fn(*closure_list)
|
|
|
|
def false_fn(*operands):
|
|
return inner_most_fn(*operands) - inner_most_fn(*closure_list)
|
|
|
|
else:
|
|
|
|
def true_fn(*operands):
|
|
return inner_most_fn(*operands)
|
|
|
|
def false_fn(*operands):
|
|
return inner_most_fn(*operands)
|
|
|
|
def fn(*operands):
|
|
if len(operands) == 0 and len(closure_list) == 0:
|
|
return torch.zeros(1)
|
|
return cond(pred, true_fn, false_fn, operands)
|
|
|
|
return operands, fn
|
|
else:
|
|
args, inner_fn = self._create_test_fns_for_cond(
|
|
pred <= 0, inner_most_fn, operands, closure_list, nested_level - 1
|
|
)
|
|
|
|
def true_fn(*operands):
|
|
return inner_most_fn(*operands) + inner_fn(*args)
|
|
|
|
def false_fn(*operands):
|
|
return inner_most_fn(*operands) - inner_fn(*args)
|
|
|
|
def fn(*operands):
|
|
if len(operands) == 0 and len(closure_list) == 0:
|
|
return torch.ones(1)
|
|
return cond(pred, true_fn, false_fn, operands)
|
|
|
|
return operands, fn
|
|
|
|
def _init_predicate(self, pred_type):
|
|
if pred_type == "bool":
|
|
return True
|
|
elif pred_type == "intTensor":
|
|
return torch.tensor(1)
|
|
elif pred_type == "floatTensor":
|
|
return torch.tensor(1.0)
|
|
elif pred_type == "boolTensor":
|
|
return torch.tensor(False)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def _init_fn(self, inner_fn_type):
|
|
if inner_fn_type == "function":
|
|
return reduce_func
|
|
elif inner_fn_type == "module":
|
|
return ReduceMod()
|
|
elif inner_fn_type == "object":
|
|
return ReduceObj()
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
@parametrize("predType", ["bool", "intTensor", "floatTensor", "boolTensor"])
|
|
@parametrize("innerFnType", ["function", "module", "object"])
|
|
@parametrize("nOperands", [0, 1])
|
|
@parametrize("nClosure", [0, 1])
|
|
@parametrize("nesting", [0, 2])
|
|
def test_cond_tracing_with_valid_inputs(
|
|
self, predType, innerFnType, nOperands, nClosure, nesting
|
|
):
|
|
pred = self._init_predicate(predType)
|
|
inner_fn = self._init_fn(innerFnType)
|
|
operands = [torch.ones(2, 3) + i for i in range(nOperands)]
|
|
closure = [torch.ones(2, 3) - i for i in range(nClosure)]
|
|
args, fn = self._create_test_fns_for_cond(
|
|
pred, inner_fn, operands, closure, nesting
|
|
)
|
|
eager_res = fn(*args)
|
|
for tracing_mode in ["symbolic", "fake", "real"]:
|
|
# set _allow_non_fake_inputs = True to allow fake prop through closures
|
|
with self.subTest(tracing_mode=tracing_mode):
|
|
gm = make_fx(
|
|
fn, tracing_mode=tracing_mode, _allow_non_fake_inputs=True
|
|
)(*args)
|
|
self.assertEqual(gm(*args), eager_res)
|
|
|
|
@parametrize("predType", ["boolTensor"])
|
|
@parametrize("innerFnType", ["function", "module", "object"])
|
|
@parametrize("nOperands", [1, 2])
|
|
@parametrize("nClosure", [0, 1])
|
|
@parametrize("nesting", [0])
|
|
def test_cond_vmap(self, predType, innerFnType, nOperands, nClosure, nesting):
|
|
pred = self._init_predicate(predType)
|
|
inner_fn = self._init_fn(innerFnType)
|
|
operands = [torch.ones(2, 3) + i for i in range(nOperands)]
|
|
closure = [torch.ones(2, 3) - i for i in range(nClosure)]
|
|
args, fn = self._create_test_fns_for_cond(
|
|
pred, inner_fn, operands, closure, nesting
|
|
)
|
|
eager_res = fn(*args)
|
|
out = torch.vmap(fn)(*args)
|
|
if nClosure == 0:
|
|
self.assertEqual(eager_res, out)
|
|
else:
|
|
self.assertEqual(eager_res, out[0])
|
|
self.assertEqual(eager_res, out[1])
|
|
|
|
def test_cond_vmap_simple(self):
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: x + 100,
|
|
false_fn=lambda x: x,
|
|
operands=(x,),
|
|
)
|
|
|
|
a = torch.arange(15).reshape((3, 5))
|
|
res = torch.vmap(fn, in_dims=(0,))(a)
|
|
self.assertEqual(res.shape, (3, 5))
|
|
self.assertEqual(res, a + 100)
|
|
|
|
def test_cond_vmap_multiple_inputs(self):
|
|
def fn(x, y):
|
|
return torch.cond(
|
|
pred=x.sum() < y.sum(),
|
|
true_fn=lambda x, y: x + 100,
|
|
false_fn=lambda x, y: y,
|
|
operands=(x, y),
|
|
)
|
|
|
|
a = torch.arange(15).reshape(3, 5)
|
|
b = torch.ones_like(a) + 3
|
|
res = torch.vmap(fn, in_dims=(0, 0))(a, b)
|
|
expected = torch.tensor(
|
|
[[100, 101, 102, 103, 104], [4, 4, 4, 4, 4], [4, 4, 4, 4, 4]]
|
|
)
|
|
self.assertEqual(res.shape, (3, 5))
|
|
self.assertEqual(expected, res)
|
|
|
|
def test_cond_vmap_single_input_with_closure(self):
|
|
a = torch.ones((3, 5)) + 3
|
|
c = torch.arange(5)
|
|
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: x + c,
|
|
false_fn=lambda x: x - c,
|
|
operands=(x,),
|
|
)
|
|
|
|
res = torch.vmap(fn, in_dims=(0,))(
|
|
a,
|
|
)
|
|
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
|
|
res = torch.vmap(fn, in_dims=(0,))(
|
|
a,
|
|
)
|
|
self.assertEqual(a + c, res)
|
|
|
|
def test_cond_vmap_multiple_args_with_closure(self):
|
|
a = torch.ones((3, 5), dtype=torch.int64) + 3
|
|
b = torch.arange(15).reshape(3, 5)
|
|
c = torch.arange(5)
|
|
|
|
def fn(x, y):
|
|
return torch.cond(
|
|
pred=torch.tensor([False]),
|
|
true_fn=lambda x, y: x + c,
|
|
false_fn=lambda x, y: y - c,
|
|
operands=(x, y),
|
|
)
|
|
|
|
res = torch.vmap(fn)(a, b)
|
|
self.assertEqual(b - c, res)
|
|
|
|
@parametrize("nClosure", [0, 1])
|
|
def test_cond_vmap_multiple_outputs(self, nClosure):
|
|
if nClosure:
|
|
c = torch.ones(5, dtype=torch.int64) + 5
|
|
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: (x + c, x - c),
|
|
false_fn=lambda x: (x, x),
|
|
operands=(x,),
|
|
)
|
|
|
|
else:
|
|
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: (x + 1, x - 1),
|
|
false_fn=lambda x: (x, x),
|
|
operands=(x,),
|
|
)
|
|
|
|
a = torch.arange(15).reshape(3, 5)
|
|
res = torch.vmap(fn)(
|
|
a,
|
|
)
|
|
self.assertEqual(len(res), 2)
|
|
if nClosure:
|
|
self.assertEqual(res, (a + c, a - c))
|
|
else:
|
|
self.assertEqual(res, (a + 1, a - 1))
|
|
|
|
def test_vmap_vmap(self):
|
|
def fn(x):
|
|
return torch.cond(
|
|
pred=torch.tensor([True]),
|
|
true_fn=lambda x: x + 1,
|
|
false_fn=lambda x: x - 1,
|
|
operands=(x,),
|
|
)
|
|
|
|
def wrapper(x):
|
|
return torch.vmap(fn)(x)
|
|
|
|
a = torch.ones((3, 4, 5))
|
|
res = torch.vmap(wrapper)(a)
|
|
self.assertEqual(res, a + 1)
|
|
|
|
|
|
instantiate_parametrized_tests(TestControlFlowTraced)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|