Turn on F401: Unused import warning. (#18598)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
This commit is contained in:
Edward Yang 2019-03-30 08:58:10 -07:00 committed by Facebook Github Bot
parent 96456bfa4c
commit 173f224570
131 changed files with 175 additions and 333 deletions

View File

@ -22,7 +22,7 @@ def handle_missing_graphviz(f):
calls to the draw() method of the returned object to do nothing.
"""
try:
import pygraphviz
import pygraphviz # noqa: F401
return f
except ModuleNotFoundError:

View File

@ -7,7 +7,7 @@ max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203,E305,E402,E501,E721,E741,F401,F403,F405,F821,F841,F999,W503,W504,C408,
E203,E305,E402,E501,E721,E741,F403,F405,F821,F841,F999,W503,W504,C408,
# these ignores are from flake8-bugbear; please fix!
B007,B008,
# these ignores are from flake8-comprehensions; please fix!

View File

@ -1,7 +1,6 @@
import sys
import json
import math
import numpy
import argparse
parser = argparse.ArgumentParser()

View File

@ -1,5 +1,5 @@
from .cells import *
from .factory import *
from .cells import * # noqa: F401
from .factory import * # noqa: F401
# (output, next_state) = cell(input, state)
seqLength = 100

View File

@ -1,5 +1,4 @@
import argparse
import os
import subprocess
import sys
import time

View File

@ -2,7 +2,6 @@ import argparse
import torch
import torch.nn as nn
from .cells import lstm_cell
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners

View File

@ -20,11 +20,8 @@
import os
# sys.path.insert(0, os.path.abspath('.'))
import sys
import textwrap
import pytorch_sphinx_theme
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.

View File

@ -25,7 +25,7 @@ import os
import torch
try:
import torchvision
import torchvision # noqa: F401
except ImportError:
import warnings
warnings.warn('unable to load "torchvision" package')

View File

@ -142,7 +142,7 @@
# we will search for libraries in these paths
from __future__ import print_function
from setuptools import setup, Extension, distutils, Command, find_packages
from setuptools import setup, Extension, distutils, find_packages
from distutils import core, dir_util
from distutils.core import Distribution
from distutils.errors import DistutilsArgError
@ -151,7 +151,6 @@ import setuptools.command.install
import distutils.command.clean
import distutils.sysconfig
import filecmp
import platform
import subprocess
import shutil
import sys

View File

@ -1,9 +1,9 @@
import torch
from torch._six import inf, nan, istuple
from functools import reduce, wraps
from torch._six import inf, istuple
from functools import reduce
from operator import mul, itemgetter
import collections
from torch.autograd import Variable, Function, detect_anomaly
from torch.autograd import Variable
from torch.testing import make_non_contiguous
from common_utils import (skipIfNoLapack,
prod_single_zero, random_square_matrix_of_rank,

View File

@ -13,7 +13,7 @@ import torch.nn as nn
import torch.nn.functional as F
from torch.nn.functional import _Reduction
from common_utils import TestCase, to_gpu, freeze_rng_state, is_iterable, \
TEST_WITH_ROCM, skipIfRocm
TEST_WITH_ROCM
from common_cuda import TEST_CUDA
from torch.autograd.gradcheck import get_numerical_jacobian, iter_tensors
from torch.autograd import Variable

View File

@ -1,4 +1,3 @@
import argparse
import os.path
import tempfile
import unittest

View File

@ -4,12 +4,10 @@ from __future__ import print_function
from __future__ import unicode_literals
import sys
import itertools
import torch
import torch.jit
from torch.autograd import Variable
import torch.autograd.function as function
import onnx
import caffe2.python.onnx.backend as c2

View File

@ -5,12 +5,9 @@ from __future__ import unicode_literals
import argparse
import glob
import numpy as np
import onnx.backend.test
import caffe2.python.onnx.backend as c2
import os
import shutil
from onnx import numpy_helper
from test_caffe2_common import run_generated_test
import google.protobuf.text_format
import test_onnx_common

View File

@ -13,7 +13,6 @@ import shutil
import torch
import traceback
import test_pytorch_common
import test_onnx_common
from common_nn import module_tests
from test_nn import new_module_tests

View File

@ -1,4 +1,4 @@
from .squeezenet import *
from .super_resolution import *
from .op_test import *
from .srresnet import *
from .squeezenet import * # noqa: F401
from .super_resolution import * # noqa: F401
from .op_test import * # noqa: F401
from .srresnet import * # noqa: F401

View File

@ -1,4 +1,3 @@
import math
import torch
import torch.nn as nn
import torch.nn.init as init

View File

@ -1,4 +1,3 @@
import torch
import torch.nn as nn
import torch.nn.init as init

View File

@ -3,7 +3,6 @@
import torch
import torch.nn as nn
from torch.autograd import Variable
class RNNModel(nn.Module):

View File

@ -5,7 +5,6 @@ from torchvision.models.resnet import resnet50
from torchvision.models.vgg import vgg16, vgg16_bn, vgg19, vgg19_bn
from model_defs.mnist import MNIST
from model_defs.word_language_model import RNNModel
from model_defs.squeezenet import SqueezeNet
from model_defs.super_resolution import SuperResolutionNet
from model_defs.srresnet import SRResNet
@ -17,17 +16,9 @@ from test_pytorch_common import TestCase, run_tests, skipIfNoLapack
import torch
import torch.onnx
import torch.onnx.utils
from torch.autograd import Variable, Function
from torch.nn import Module
from torch.autograd import Variable
from torch.onnx import OperatorExportTypes
import onnx
import onnx.checker
import onnx.helper
import google.protobuf.text_format
import io
import unittest
import caffe2.python.onnx.backend as backend

View File

@ -1,4 +1,4 @@
from test_pytorch_common import TestCase, run_tests, skipIfNoLapack, flatten
from test_pytorch_common import TestCase, run_tests, flatten
import torch
import torch.onnx
@ -10,11 +10,9 @@ import itertools
import io
import unittest
import inspect
import argparse
import glob
import os
import shutil
import sys
import common_utils as common

View File

@ -13,7 +13,7 @@ import torch.autograd.function as function
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.insert(-1, pytorch_test_dir)
from common_utils import *
from common_utils import * # noqa: F401
torch.set_default_tensor_type('torch.FloatTensor')

View File

@ -1,7 +1,6 @@
# Some standard imports
import numpy as np
from torch import nn
from torch.autograd import Variable
import torch.onnx
import torch.nn.init as init
from caffe2.python.model_helper import ModelHelper

View File

@ -3,7 +3,6 @@ from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from functools import wraps
import numpy as np
import sys
import unittest

View File

@ -1,7 +1,6 @@
import json
import torch
import torch.legacy.optim as optim
from pprint import pprint
def rosenbrock(tensor):

View File

@ -8,8 +8,8 @@ import warnings
from copy import deepcopy
from collections import OrderedDict
from itertools import product
from operator import mul, itemgetter
from functools import reduce, wraps
from operator import mul
from functools import reduce
from torch._six import inf, nan, istuple
from torch.autograd.gradcheck import gradgradcheck, gradcheck
from torch.autograd.function import once_differentiable
@ -17,14 +17,11 @@ from torch.autograd.profiler import profile
from torch.utils.checkpoint import checkpoint
from common_utils import (TEST_MKL, TestCase, run_tests, skipIfNoLapack,
suppress_warnings, skipIfRocm,
prod_single_zero, random_square_matrix_of_rank,
random_symmetric_matrix, random_symmetric_psd_matrix,
random_symmetric_pd_matrix, make_nonzero_det,
random_fullrank_matrix_distinct_singular_value, load_tests)
load_tests)
from common_cuda import TEST_CUDA
from torch.autograd import Variable, Function, detect_anomaly
from torch.autograd.function import InplaceFunction
from torch.testing import make_non_contiguous, randn_like
from torch.testing import randn_like
from common_methods_invocations import (method_tests,
create_input, unpack_variables,
EXCLUDE_FUNCTIONAL, EXCLUDE_GRADCHECK,
@ -32,7 +29,7 @@ from common_methods_invocations import (method_tests,
EXCLUDE_GRADGRADCHECK_BY_TEST_NAME,
exclude_tensor_method,
mask_not_all_zeros,
L, S)
S)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings

View File

@ -1,7 +1,5 @@
import io
import math
import tempfile
import re
import unittest
import sys
from itertools import repeat
@ -19,9 +17,9 @@ from torch._six import inf, nan
from test_torch import _TestTorchMixin
from common_methods_invocations import tri_tests_args, tri_large_tests_args, \
run_additional_tri_tests, _compare_trilu_indices, _compare_large_trilu_indices
_compare_trilu_indices, _compare_large_trilu_indices
from common_utils import TestCase, get_gpu_type, to_gpu, freeze_rng_state, run_tests, \
PY3, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, skipIfRocm, TEST_NUMPY, TEST_WITH_ROCM, load_tests, iter_indices
PY3, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, skipIfRocm, TEST_NUMPY, TEST_WITH_ROCM, load_tests
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings

View File

@ -3,13 +3,10 @@ import sys
import errno
import os
import ctypes
import signal
import torch
import gc
import time
import traceback
import unittest
import subprocess
import itertools
import warnings
from torch import multiprocessing as mp

View File

@ -16,11 +16,9 @@ import torch.cuda
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from common_utils import TestCase, run_tests
from torch._utils_internal import TEST_MASTER_ADDR as MASTER_ADDR
from torch._utils_internal import TEST_MASTER_PORT as MASTER_PORT
import common_utils as common
BACKEND = os.environ["BACKEND"]
TEMP_DIR = os.environ["TEMP_DIR"]

View File

@ -2,8 +2,6 @@ import torch
import unittest
import os
import re
import ast
import _ast
import textwrap

View File

@ -1,6 +1,5 @@
from common_utils import TestCase, run_tests
import torch
import warnings
from torch import tensor
import unittest

View File

@ -12,9 +12,6 @@ from contextlib import contextmanager
from itertools import product, chain
import torch.jit.frontend
from torch.autograd import Variable, Function
from torch.nn import Module
from torch.autograd.function import traceable
from torch.testing import assert_allclose
from torch.onnx import OperatorExportTypes
from torch._six import inf, PY2, builtins, StringIO
from common_utils import TestCase, run_tests, IS_WINDOWS, TEST_WITH_UBSAN, \
@ -25,7 +22,6 @@ from textwrap import dedent
from functools import wraps
import os
import io
import itertools
import sys
import unittest
import inspect
@ -46,14 +42,13 @@ from common_methods_invocations import method_tests as autograd_method_tests
from common_methods_invocations import create_input, unpack_variables, \
exclude_tensor_method, non_differentiable, EXCLUDE_GRADCHECK, EXCLUDE_FUNCTIONAL
from torch.testing import FileCheck
from torch._C import TensorType, TupleType, FloatType, IntType, \
ListType, StringType, DictType
from torch._C import TensorType
from copy import deepcopy
import random
from typing import List, Dict, Optional, Tuple
from torch.jit.frontend import NotSupportedError
from torch import Tensor
from torch.jit.annotations import BroadcastingList2, BroadcastingList3
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
# For testing truediv in python 2
from test_module.future_div import div_int_future, div_float_future
@ -6727,8 +6722,6 @@ a")
@unittest.skipIf(not PY35, "Python 3.5 needed")
def test_type_annotation_py3(self):
import importlib.util
code = dedent("""
import torch
from torch import Tensor
@ -9349,8 +9342,6 @@ a")
foo(torch.ones([123])) # wrong size
def test_builtin_error_messsage(self):
from torch.nn.modules.utils import _single, _pair, _triple, _quadruple
with self.assertRaisesRegex(RuntimeError, "arguments for call are not valid"):
@torch.jit.script
def close_match(x):
@ -11020,8 +11011,6 @@ class TestEndToEndHybridFrontendModels(JitTestCase):
@staticmethod
def _test_super_resolution(self, device, check_export_import=True):
import torch.nn.init as init
class Net(nn.Module):
def __init__(self, upscale_factor):

View File

@ -3,17 +3,12 @@ from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import functools
import os
import unittest
import sys
import torch
import torch.autograd.function as function
from torch import Tensor
from common_utils import TestCase, run_tests, IS_WINDOWS, \
from common_utils import IS_WINDOWS, \
skipIfRocm, IS_SANDCASTLE
from typing import List, Dict, Optional, Tuple
from test_jit import JitTestCase, enable_cpu_fuser, RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, \
backward_graph

View File

@ -1,5 +1,5 @@
from __future__ import division
import torch
import torch # noqa: F401
def div_int_future():

View File

@ -1,4 +1,4 @@
import torch
import torch # noqa: F401
def div_int_nofuture():

View File

@ -13,7 +13,6 @@ import torch.utils.hooks
from torch.nn import Parameter
from common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest)
from multiprocessing.reduction import ForkingPickler
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings

View File

@ -11,8 +11,6 @@ from itertools import repeat, product
from functools import wraps, reduce
from operator import mul
from collections import OrderedDict
import hashlib
import os
import threading
import torch
@ -29,9 +27,9 @@ from torch.autograd import Variable, gradcheck
from torch.autograd.gradcheck import gradgradcheck
from torch.nn import Parameter
from torch.nn.parallel._functions import Broadcast
from common_utils import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, skipIfRocm, TEST_WITH_ROCM, \
TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, download_file, PY3, PY34, to_gpu, \
get_function_arglist, skipCUDAMemoryLeakCheckIf, load_tests
from common_utils import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, skipIfRocm, \
TEST_NUMPY, TEST_SCIPY, download_file, PY3, PY34, to_gpu, \
get_function_arglist, load_tests
from common_cuda import TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, \
TEST_CUDNN_VERSION
from common_nn import NNTestCase, ModuleTest, CriterionTest, TestBase, \

View File

@ -1,13 +1,9 @@
import torch
import torch.jit
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import unittest
from caffe2.python import core
from common_utils import TestCase, run_tests, IS_WINDOWS, TEST_WITH_UBSAN, \
skipIfRocm, skipIfNoLapack, suppress_warnings, load_tests, IS_SANDCASTLE, \
freeze_rng_state, set_rng_seed
from common_utils import TestCase, run_tests
def canonical(graph):

View File

@ -1,5 +1,4 @@
import torch
from torch import sparse
import itertools
import functools

View File

@ -15,7 +15,6 @@ import torch.cuda
import torch.distributed.deprecated as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from common_utils import TestCase, run_tests
from torch._utils_internal import TEST_MASTER_ADDR as MASTER_ADDR

View File

@ -3,7 +3,6 @@ import io
import os
import math
import random
import operator
import copy
import shutil
import torch
@ -17,7 +16,7 @@ import gzip
import types
import textwrap
import re
from torch._utils_internal import get_file_path, get_file_path_2
from torch._utils_internal import get_file_path_2
from torch.utils.dlpack import from_dlpack, to_dlpack
from torch._utils import _rebuild_tensor
from torch._six import inf, nan, string_classes, istuple
@ -2032,7 +2031,6 @@ class _TestTorchMixin(object):
def _test_int_pow(self, cast):
if not TEST_NUMPY:
return
import numpy as np
def check_against_np(tensor, exp):
tensor_np = tensor.cpu().numpy()
@ -4669,7 +4667,6 @@ class _TestTorchMixin(object):
# Test non-contiguous inputs.
if not TEST_NUMPY:
return
import numpy
from numpy.linalg import solve
A = cast(random_fullrank_matrix_distinct_singular_value(2, 2)).permute(1, 0, 2)
b = cast(torch.randn(2, 2, 2)).permute(2, 1, 0)
@ -6218,7 +6215,6 @@ class _TestTorchMixin(object):
# Test non-contiguous inputs.
if not TEST_NUMPY:
return
import numpy
from numpy.linalg import solve
A = random_symmetric_pd_matrix(2, 2)
b = torch.randn(2, 2, 2)

View File

@ -1,6 +1,6 @@
from __future__ import print_function
import unittest
from common_utils import TestCase, run_tests, download_file
from common_utils import TestCase, run_tests
import tempfile
import torch
import re
@ -10,7 +10,7 @@ import subprocess
import inspect
try:
import mypy
import mypy # noqa: F401
HAVE_MYPY = True
except ImportError:
HAVE_MYPY = False

View File

@ -2,22 +2,19 @@ from __future__ import print_function
import sys
import os
import re
import math
import shutil
import random
import tempfile
import unittest
import traceback
import torch
import torch.nn as nn
import torch.utils.data
import torch.cuda
import warnings
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
import torch.hub as hub
from torch.autograd._functions.utils import prepare_onnx_paddings
from torch.autograd._functions.utils import check_onnx_broadcast
from common_utils import IS_WINDOWS, IS_PPC, skipIfRocm, load_tests
from common_utils import skipIfRocm, load_tests
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
@ -34,7 +31,7 @@ skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
HAS_CUDA = torch.cuda.is_available()
from common_utils import TestCase, run_tests, download_file
from common_utils import TestCase, run_tests
class RandomDatasetMock(object):
@ -326,7 +323,7 @@ test_dir = os.path.abspath(os.path.dirname(str(__file__)))
class TestFFI(TestCase):
def test_deprecated(self):
with self.assertRaisesRegex(ImportError, "torch.utils.ffi is deprecated. Please use cpp extensions instead."):
from torch.utils.ffi import create_extension
from torch.utils.ffi import create_extension # noqa: F401
@unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set')

View File

@ -2,7 +2,6 @@
from __future__ import absolute_import, division, print_function
import os
import sys
import subprocess
import argparse
from functools import reduce

View File

@ -23,7 +23,6 @@
# differentiable subcomponents.
#
from __future__ import print_function
import os
import sys
from .utils import CodeTemplate, nested_dict, write, uninplace_api_name
from .gen_autograd import VIEW_FUNCTIONS

View File

@ -1,8 +1,5 @@
import argparse
import os
from os.path import dirname, abspath
import shlex
import subprocess
import sys
# By appending pytorch_root to sys.path, this module can import other torch

View File

@ -1,22 +1,20 @@
from .setup_helpers.env import (IS_64BIT, IS_ARM, IS_DARWIN, IS_LINUX, IS_PPC, IS_WINDOWS,
from .setup_helpers.env import (IS_64BIT, IS_DARWIN, IS_WINDOWS,
DEBUG, REL_WITH_DEB_INFO, USE_MKLDNN,
check_env_flag, check_negative_env_flag, hotpatch_build_env_vars)
check_env_flag, check_negative_env_flag)
import os
import sys
import distutils
import distutils.sysconfig
from distutils.file_util import copy_file
from distutils.dir_util import copy_tree
from subprocess import check_call, call, check_output
from subprocess import check_call, check_output
from distutils.version import LooseVersion
from .setup_helpers.cuda import USE_CUDA, CUDA_HOME
from .setup_helpers.dist_check import USE_DISTRIBUTED, USE_GLOO_IBVERBS
from .setup_helpers.nccl import USE_SYSTEM_NCCL, NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB, USE_NCCL
from .setup_helpers.rocm import ROCM_HOME, ROCM_VERSION, USE_ROCM
from .setup_helpers.rocm import USE_ROCM
from .setup_helpers.nnpack import USE_NNPACK
from .setup_helpers.qnnpack import USE_QNNPACK
from .setup_helpers.cudnn import CUDNN_INCLUDE_DIR, CUDNN_LIB_DIR, CUDNN_LIBRARY, USE_CUDNN
from .setup_helpers.cudnn import CUDNN_INCLUDE_DIR, CUDNN_LIBRARY, USE_CUDNN
from pprint import pprint

View File

@ -12,9 +12,7 @@ Only files that are in CLANG_FORMAT_WHITELIST are checked.
import subprocess
import os
import argparse
import fnmatch
import difflib
import sys
import re

View File

@ -1 +1 @@
from .cwrap import cwrap
from .cwrap import cwrap # noqa: F401

View File

@ -1,5 +1,4 @@
from . import CWrapPlugin
from string import Template
class ArgumentReferences(CWrapPlugin):

View File

@ -1,8 +1,6 @@
from string import Template
import copy
from copy import deepcopy
from . import CWrapPlugin
from itertools import product
class CuDNNPlugin(CWrapPlugin):

View File

@ -1,5 +1,4 @@
from . import CWrapPlugin
from string import Template
class GILRelease(CWrapPlugin):

View File

@ -1,7 +1,4 @@
import os
from copy import deepcopy
from . import CWrapPlugin
from itertools import product
from ...shared import cwrap_common

View File

@ -420,15 +420,15 @@ class CWrapPlugin(object):
return template
from .NNExtension import NNExtension
from .NullableArguments import NullableArguments
from .OptionalArguments import OptionalArguments
from .ArgcountChecker import ArgcountChecker
from .ArgumentReferences import ArgumentReferences
from .BeforeAfterCall import BeforeAfterCall
from .ConstantArguments import ConstantArguments
from .ReturnArguments import ReturnArguments
from .GILRelease import GILRelease
from .AutoGPU import AutoGPU
from .CuDNNPlugin import CuDNNPlugin
from .WrapDim import WrapDim
from .NNExtension import NNExtension # noqa: F401
from .NullableArguments import NullableArguments # noqa: F401
from .OptionalArguments import OptionalArguments # noqa: F401
from .ArgcountChecker import ArgcountChecker # noqa: F401
from .ArgumentReferences import ArgumentReferences # noqa: F401
from .BeforeAfterCall import BeforeAfterCall # noqa: F401
from .ConstantArguments import ConstantArguments # noqa: F401
from .ReturnArguments import ReturnArguments # noqa: F401
from .GILRelease import GILRelease # noqa: F401
from .AutoGPU import AutoGPU # noqa: F401
from .CuDNNPlugin import CuDNNPlugin # noqa: F401
from .WrapDim import WrapDim # noqa: F401

View File

@ -5,7 +5,6 @@ import argparse
import gzip
import os
import sys
import urllib
try:
from urllib.error import URLError

View File

@ -12,14 +12,11 @@ generated. In the full build system, OUTPUT_DIR is
torch/csrc/jit/generated/
"""
import os
import argparse
import re
import copy
from itertools import count, combinations, groupby
from ..autograd.utils import CodeTemplate, write, uninplace_api_name
from itertools import groupby
from ..autograd.utils import CodeTemplate, write
from ..autograd.gen_autograd import load_aten_declarations
from collections import OrderedDict
from ..autograd.gen_autograd import RETURNS_VIEWS_OF_INPUT
# JIT has a type system of

View File

@ -1 +1 @@
from .generate_wrappers import generate_wrappers, wrap_function, import_module
from .generate_wrappers import generate_wrappers, wrap_function, import_module # noqa: F401

View File

@ -1,6 +1,5 @@
import os
import sys
from string import Template, ascii_lowercase
from string import Template
from ..cwrap import cwrap
from ..cwrap.plugins import NNExtension, NullableArguments, AutoGPU
from ..shared import import_module

View File

@ -1,11 +1,7 @@
from __future__ import print_function
import multiprocessing
import sys
import os
import inspect
import collections
import yaml
import types
import re
import argparse

View File

@ -2,8 +2,7 @@ import os
import subprocess
import glob
from .env import IS_CONDA, IS_LINUX, IS_WINDOWS, CONDA_DIR, check_env_flag, check_negative_env_flag, gather_paths
from .cuda import USE_CUDA
from .env import IS_CONDA, IS_WINDOWS, CONDA_DIR, check_env_flag, check_negative_env_flag, gather_paths
# On ROCm, RCCL development isn't complete. https://github.com/ROCmSoftwarePlatform/rccl
USE_DISTRIBUTED = not check_negative_env_flag("USE_DISTRIBUTED") and not IS_WINDOWS and not check_env_flag("USE_ROCM")

View File

@ -1,7 +1,4 @@
import os
import glob
from .env import IS_WINDOWS, IS_CONDA, CONDA_DIR, check_env_flag, gather_paths
from .env import check_env_flag
from .rocm import USE_ROCM, ROCM_HOME

View File

@ -1,7 +1,5 @@
import os
import glob
import warnings
from itertools import chain
from .env import IS_WINDOWS, IS_DARWIN, IS_CONDA, CONDA_DIR, check_negative_env_flag, \
gather_paths

View File

@ -1,7 +1,6 @@
import os
import platform
import ctypes.util
from subprocess import Popen, PIPE
from .cuda import USE_CUDA

View File

@ -1,3 +1,2 @@
from .module_loader import import_module
from .cwrap_common import set_declaration_defaults, \
sort_by_number_of_options, enumerate_options_due_to_default
from .module_loader import import_module # noqa: F401
from .cwrap_common import set_declaration_defaults, sort_by_number_of_options, enumerate_options_due_to_default # noqa: F401

View File

@ -13,7 +13,7 @@ import sys
import platform
from ._utils import _import_dotted_name
from ._utils_internal import get_file_path, prepare_multiprocessing_environment
from .version import __version__
from .version import __version__ # noqa: F401
from ._six import string_classes as _string_classes
__all__ = [
@ -39,7 +39,7 @@ import os as _dl_flags
# if we have numpy, it *must* be imported before the call to setdlopenflags()
# or there is risk that later c modules will segfault when importing numpy
try:
import numpy as _np
import numpy as _np # noqa: F401
except ImportError:
pass
@ -281,7 +281,7 @@ del BoolStorageBase
import torch.cuda
import torch.autograd
from torch.autograd import no_grad, enable_grad, set_grad_enabled
from torch.autograd import no_grad, enable_grad, set_grad_enabled # noqa: F401
import torch.nn
import torch.optim
import torch.multiprocessing
@ -309,7 +309,7 @@ def compiled_with_cxx11_abi():
# Import the ops "namespace"
from torch._ops import ops
from torch._ops import ops # noqa: F401
# Import the quasi random sampler
import torch.quasirandom

View File

@ -53,9 +53,9 @@ else:
if PY2:
import Queue as queue
import Queue as queue # noqa: F401
else:
import queue
import queue # noqa: F401
def with_metaclass(meta, *bases):

View File

@ -1,8 +1,6 @@
import math
import torch
from functools import reduce
from sys import float_info
from torch._six import inf, nan
from torch._six import inf
class __PrinterOptions(object):

View File

@ -1,7 +1,3 @@
import os
import itertools
import importlib
try:
# when compiling a cffi extension, this works. When compiling
# torch itself, it doesn't work because the parent module can't

View File

@ -8,11 +8,11 @@ import torch
import warnings
from .variable import Variable
from .function import Function, NestedIOFunction
from .gradcheck import gradcheck, gradgradcheck
from .grad_mode import no_grad, enable_grad, set_grad_enabled
from .anomaly_mode import detect_anomaly, set_detect_anomaly
from . import profiler
from .function import Function, NestedIOFunction # noqa: F401
from .gradcheck import gradcheck, gradgradcheck # noqa: F401
from .grad_mode import no_grad, enable_grad, set_grad_enabled # noqa: F401
from .anomaly_mode import detect_anomaly, set_detect_anomaly # noqa: F401
from . import profiler # noqa: F401
__all__ = ['Variable', 'Function', 'backward', 'grad_mode']

View File

@ -1 +1 @@
from .tensor import *
from .tensor import * # noqa: F401

View File

@ -1,4 +1,3 @@
import torch
from functools import reduce

View File

@ -1,7 +1,6 @@
import torch
from torch._six import container_abcs, istuple
import torch.testing
import sys
from itertools import product
import warnings

View File

@ -1,12 +1,7 @@
import subprocess
import re
import os
import sys
import itertools
from collections import defaultdict, namedtuple
import torch
from torch._six import FileNotFoundError
class range(object):

View File

@ -648,7 +648,7 @@ torch._storage_classes.add(ByteStorage)
torch._storage_classes.add(HalfStorage)
torch._storage_classes.add(BoolStorage)
from . import sparse
from . import profiler
from . import nvtx
from .streams import Stream, Event
from . import sparse # noqa: F401
from . import profiler # noqa: F401
from . import nvtx # noqa: F401
from .streams import Stream, Event # noqa: F401

View File

@ -1,8 +1,7 @@
import torch
from . import nccl
from torch._utils import _accumulate, _take_tensors, _flatten_dense_tensors, \
_flatten_sparse_tensors, _unflatten_dense_tensors, \
_unflatten_sparse_tensors, _reorder_tensors_as
from torch._utils import _take_tensors, _flatten_dense_tensors, \
_unflatten_dense_tensors, _reorder_tensors_as
def broadcast(tensor, devices):

View File

@ -10,8 +10,8 @@ if is_available() and not torch._C._c10d_init():
if is_available():
from .distributed_c10d import *
from .distributed_c10d import * # noqa: F401
# Variables prefixed with underscore are not auto imported
# See the comment in `distributed_c10d.py` above `_backend` on why we expose
# this.
from .distributed_c10d import _backend
from .distributed_c10d import _backend # noqa: F401

View File

@ -3,7 +3,10 @@ import warnings
from torch._six import string_classes
from datetime import timedelta
from .rendezvous import rendezvous, register_rendezvous_handler
# This module is wildcard imported from torch.distributed.
# TODO: specify __all__
from .rendezvous import rendezvous, register_rendezvous_handler # noqa: F401
from . import BroadcastOptions, AllreduceOptions, ReduceOptions, \
ScatterOptions, GatherOptions
from . import ReduceOp

View File

@ -140,11 +140,8 @@ will not pass ``--local_rank`` when you specify this flag.
import sys
import subprocess
import os
import socket
from argparse import ArgumentParser, REMAINDER
import torch
def parse_args():
"""

View File

@ -124,6 +124,8 @@ __all__ = [
'Gamma',
'Geometric',
'Gumbel',
'HalfCauchy',
'HalfNormal',
'Independent',
'Laplace',
'LogNormal',

View File

@ -2,7 +2,7 @@ import torch
from torch._six import nan
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import probs_to_logits, logits_to_probs, lazy_property, broadcast_all
from torch.distributions.utils import probs_to_logits, logits_to_probs, lazy_property
class Categorical(Distribution):

View File

@ -1,4 +1,3 @@
import torch
from torch.distributions import constraints
from torch.distributions.gamma import Gamma

View File

@ -1,6 +1,5 @@
from numbers import Number
import torch
import math
from torch._six import nan
from torch.distributions import constraints
from torch.distributions.distribution import Distribution

View File

@ -3,7 +3,7 @@ from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all, lazy_property
from torch.distributions.utils import broadcast_all
def _standard_gamma(concentration):

View File

@ -1,6 +1,5 @@
import math
import torch
from torch._six import inf
from torch.distributions import constraints
from torch.distributions.transforms import AbsTransform

View File

@ -1,6 +1,5 @@
import math
import torch
from torch._six import inf
from torch.distributions import constraints
from torch.distributions.transforms import AbsTransform

View File

@ -19,7 +19,6 @@ from .gumbel import Gumbel
from .half_normal import HalfNormal
from .independent import Independent
from .laplace import Laplace
from .logistic_normal import LogisticNormal
from .lowrank_multivariate_normal import (LowRankMultivariateNormal, _batch_lowrank_logdet,
_batch_lowrank_mahalanobis)
from .multivariate_normal import (MultivariateNormal, _batch_mahalanobis)

View File

@ -1,4 +1,3 @@
import torch
from torch.distributions import constraints
from torch.distributions.transforms import ExpTransform
from torch.distributions.normal import Normal

View File

@ -2,7 +2,7 @@ import torch
from torch.distributions import constraints
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import ComposeTransform, ExpTransform, StickBreakingTransform
from torch.distributions.transforms import StickBreakingTransform
class LogisticNormal(TransformedDistribution):

View File

@ -1,4 +1,3 @@
import torch
from torch.distributions import constraints
from torch.distributions.exponential import Exponential
from torch.distributions.transformed_distribution import TransformedDistribution

View File

@ -1,5 +1,4 @@
import math
from numbers import Number
import torch
from torch._six import inf, nan

View File

@ -1,6 +1,5 @@
from functools import update_wrapper
from numbers import Number
import math
import torch
import torch.nn.functional as F

View File

@ -1 +1 @@
from .onnx import *
from .onnx import * # noqa: F401

View File

@ -2,7 +2,6 @@ import importlib
import os
import shutil
import sys
import tempfile
import zipfile
if sys.version_info[0] == 2:
@ -10,10 +9,7 @@ if sys.version_info[0] == 2:
from urllib2 import urlopen # noqa f811
else:
from urllib.request import urlopen
from urllib.parse import urlparse
import torch
import torch.utils.model_zoo as model_zoo
from urllib.parse import urlparse # noqa: F401
MASTER_BRANCH = 'master'
ENV_TORCH_HUB_DIR = 'TORCH_HUB_DIR'

View File

@ -1,35 +1,31 @@
import torch._C
from torch import Tensor
from torch.autograd import Variable, function
from torch.serialization import validate_cuda_device
from torch.nn import Module, ModuleList, ParameterList, Parameter, Sequential
from torch.nn import Module, ModuleList, Parameter, Sequential
from torch.jit.frontend import get_jit_class_def, get_jit_def, get_default_args
import torch.backends.cudnn as cudnn
import torch.jit.annotations
import torch._jit_internal as _jit_internal
from torch._six import raise_from, with_metaclass, get_function_from_type, \
from torch._six import with_metaclass, get_function_from_type, \
string_classes
from torch._jit_internal import ignore
from torch.jit._pickle import Unpickler
from torch._jit_internal import ignore # noqa: F401
from torch.jit._pickle import Unpickler # noqa: F401
from ..nn.modules.utils import _single, _pair, _triple, _quadruple, \
_list_with_default
import torch.testing
import math
from collections import defaultdict, OrderedDict, namedtuple
from collections import OrderedDict, namedtuple
import textwrap
import sys
import warnings
import itertools
import weakref
import types
import contextlib
import os
import functools
import copy
import numbers
import collections
import re
import inspect
import pickle
if sys.version_info[0] > 2:

View File

@ -1,5 +1,3 @@
import torch
import functools
import pickle

View File

@ -1,4 +1,3 @@
import re
import sys
import ast
import inspect
@ -181,3 +180,33 @@ def ann_to_type(ann):
elif ann is str:
return StringType.get()
raise ValueError("Unknown type annotation: '{}'".format(ann.__name__))
__all__ = [
'List',
'BroadcastingList1',
'BroadcastingList2',
'BroadcastingList3',
'Tuple',
'is_tuple',
'is_list',
'Dict',
'is_dict',
'TensorType',
'TupleType',
'FloatType',
'IntType',
'ListType',
'StringType',
'DictType',
'Module',
# TODO: Consider not exporting these during wildcard import (reserve
# that for the types; for idiomatic typing code.)
'get_signature',
'get_num_params',
'parse_type_line',
'get_type_line',
'split_type_line',
'try_real_annotations',
'ann_to_type',
]

View File

@ -5,8 +5,6 @@ import ast
import inspect
import string
from textwrap import dedent
from functools import partial
from collections import namedtuple
from torch._six import PY2
from torch._C._jit_tree_views import *

View File

@ -1,11 +1,7 @@
import torch
import copy
import numbers
from typing import Tuple, Optional
from typing import Tuple, Optional # noqa: F401
from torch import Tensor
from torch.jit import ScriptModule
from torch.nn.utils.rnn import PackedSequence
from torch.nn import _VF

View File

@ -22,7 +22,7 @@ __all__ = ['set_sharing_strategy', 'get_sharing_strategy',
'get_all_sharing_strategies']
from multiprocessing import *
from multiprocessing import * # noqa: F401
__all__ += multiprocessing.__all__
@ -36,13 +36,13 @@ torch._C._multiprocessing_init()
if sys.version_info < (3, 3):
"""Override basic classes in Python 2.7 and Python 3.3 to use ForkingPickler
for serialization. Later versions of Python already use ForkingPickler."""
from .queue import Queue, SimpleQueue
from .pool import Pool
from .queue import Queue, SimpleQueue # noqa: F401
from .pool import Pool # noqa: F401
"""Add helper function to spawn N processes and wait for completion of any of
them. This depends `mp.get_context` which was added in Python 3.4."""
from .spawn import spawn, SpawnContext
from .spawn import spawn, SpawnContext # noqa: F401
if sys.platform == 'darwin' or sys.platform == 'win32':

View File

@ -1,7 +1,6 @@
import torch
import torch.utils.hooks
import os
import weakref
import threading
import multiprocessing
from multiprocessing.reduction import ForkingPickler

Some files were not shown because too many files have changed in this diff Show More