mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598 ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a Stack from [ghstack](https://github.com/ezyang/ghstack): * **#18598 Turn on F401: Unused import warning.** This was requested by someone at Facebook; this lint is turned on for Facebook by default. "Sure, why not." I had to noqa a number of imports in __init__. Hypothetically we're supposed to use __all__ in this case, but I was too lazy to fix it. Left for future work. Be careful! flake8-2 and flake8-3 behave differently with respect to import resolution for # type: comments. flake8-3 will report an import unused; flake8-2 will not. For now, I just noqa'd all these sites. All the changes were done by hand. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Differential Revision: D14687478 fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
import argparse
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
|
|
from .runner import get_nn_runners
|
|
|
|
|
|
def barf():
|
|
import pdb
|
|
pdb.set_trace()
|
|
|
|
|
|
def assertEqual(tensor, expected, threshold=0.001):
|
|
if isinstance(tensor, list) or isinstance(tensor, tuple):
|
|
for t, e in zip(tensor, expected):
|
|
assertEqual(t, e)
|
|
else:
|
|
if (tensor - expected).abs().max() > threshold:
|
|
barf()
|
|
|
|
|
|
def filter_requires_grad(tensors):
|
|
return [t for t in tensors if t.requires_grad]
|
|
|
|
|
|
def test_rnns(experim_creator, control_creator, check_grad=True, verbose=False,
|
|
seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
|
|
miniBatch=64, device='cuda', seed=17):
|
|
creator_args = dict(seqLength=seqLength, numLayers=numLayers,
|
|
inputSize=inputSize, hiddenSize=hiddenSize,
|
|
miniBatch=miniBatch, device=device, seed=seed)
|
|
|
|
print("Setting up...")
|
|
control = control_creator(**creator_args)
|
|
experim = experim_creator(**creator_args)
|
|
|
|
# Precondition
|
|
assertEqual(experim.inputs, control.inputs)
|
|
assertEqual(experim.params, control.params)
|
|
|
|
print("Checking outputs...")
|
|
control_outputs = control.forward(*control.inputs)
|
|
experim_outputs = experim.forward(*experim.inputs)
|
|
assertEqual(experim_outputs, control_outputs)
|
|
|
|
print("Checking grads...")
|
|
assert control.backward_setup is not None
|
|
assert experim.backward_setup is not None
|
|
assert control.backward is not None
|
|
assert experim.backward is not None
|
|
control_backward_inputs = control.backward_setup(control_outputs, seed)
|
|
experim_backward_inputs = experim.backward_setup(experim_outputs, seed)
|
|
|
|
control.backward(*control_backward_inputs)
|
|
experim.backward(*experim_backward_inputs)
|
|
|
|
control_grads = [p.grad for p in control.params]
|
|
experim_grads = [p.grad for p in experim.params]
|
|
assertEqual(experim_grads, control_grads)
|
|
|
|
if verbose:
|
|
print(experim.forward.graph_for(*experim.inputs))
|
|
print('')
|
|
|
|
|
|
def test_vl_py(**test_args):
|
|
# XXX: This compares vl_py with vl_lstm.
|
|
# It's done this way because those two don't give the same outputs so
|
|
# the result isn't an apples-to-apples comparison right now.
|
|
control_creator = varlen_pytorch_lstm_creator
|
|
name, experim_creator, context = get_nn_runners('vl_py')[0]
|
|
with context():
|
|
print('testing {}...'.format(name))
|
|
creator_keys = [
|
|
'seqLength', 'numLayers', 'inputSize',
|
|
'hiddenSize', 'miniBatch', 'device', 'seed'
|
|
]
|
|
creator_args = {key: test_args[key] for key in creator_keys}
|
|
|
|
print("Setting up...")
|
|
control = control_creator(**creator_args)
|
|
experim = experim_creator(**creator_args)
|
|
|
|
# Precondition
|
|
assertEqual(experim.inputs, control.inputs[:2])
|
|
assertEqual(experim.params, control.params)
|
|
|
|
print("Checking outputs...")
|
|
control_out, control_hiddens = control.forward(*control.inputs)
|
|
control_hx, control_cx = control_hiddens
|
|
experim_out, experim_hiddens = experim.forward(*experim.inputs)
|
|
experim_hx, experim_cx = experim_hiddens
|
|
|
|
experim_padded = nn.utils.rnn.pad_sequence(experim_out).squeeze(-2)
|
|
assertEqual(experim_padded, control_out)
|
|
assertEqual(torch.cat(experim_hx, dim=1), control_hx)
|
|
assertEqual(torch.cat(experim_cx, dim=1), control_cx)
|
|
|
|
print("Checking grads...")
|
|
assert control.backward_setup is not None
|
|
assert experim.backward_setup is not None
|
|
assert control.backward is not None
|
|
assert experim.backward is not None
|
|
control_backward_inputs = control.backward_setup(
|
|
(control_out, control_hiddens), test_args['seed'])
|
|
experim_backward_inputs = experim.backward_setup(
|
|
(experim_out, experim_hiddens), test_args['seed'])
|
|
|
|
control.backward(*control_backward_inputs)
|
|
experim.backward(*experim_backward_inputs)
|
|
|
|
control_grads = [p.grad for p in control.params]
|
|
experim_grads = [p.grad for p in experim.params]
|
|
assertEqual(experim_grads, control_grads)
|
|
|
|
if test_args['verbose']:
|
|
print(experim.forward.graph_for(*experim.inputs))
|
|
print('')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Test lstm correctness')
|
|
|
|
parser.add_argument('--seqLength', default='100', type=int)
|
|
parser.add_argument('--numLayers', default='1', type=int)
|
|
parser.add_argument('--inputSize', default='512', type=int)
|
|
parser.add_argument('--hiddenSize', default='512', type=int)
|
|
parser.add_argument('--miniBatch', default='64', type=int)
|
|
parser.add_argument('--device', default='cuda', type=str)
|
|
parser.add_argument('--check_grad', default='True', type=bool)
|
|
parser.add_argument('--variable_lstms', action='store_true')
|
|
parser.add_argument('--seed', default='17', type=int)
|
|
parser.add_argument('--verbose', action='store_true')
|
|
parser.add_argument('--rnns', nargs='*',
|
|
help='What to run. jit_premul, jit, etc')
|
|
args = parser.parse_args()
|
|
if args.rnns is None:
|
|
args.rnns = ['jit_premul', 'jit']
|
|
print(args)
|
|
|
|
if 'cuda' in args.device:
|
|
assert torch.cuda.is_available()
|
|
|
|
rnn_runners = get_nn_runners(*args.rnns)
|
|
|
|
should_test_varlen_lstms = args.variable_lstms
|
|
test_args = vars(args)
|
|
del test_args['rnns']
|
|
del test_args['variable_lstms']
|
|
|
|
if should_test_varlen_lstms:
|
|
test_vl_py(**test_args)
|
|
|
|
for name, creator, context in rnn_runners:
|
|
with context():
|
|
print('testing {}...'.format(name))
|
|
test_rnns(creator, pytorch_lstm_creator, **test_args)
|