pytorch/torch/distributions/half_normal.py
Edward Yang 173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00

64 lines
1.8 KiB
Python

import math
from torch._six import inf
from torch.distributions import constraints
from torch.distributions.transforms import AbsTransform
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
class HalfNormal(TransformedDistribution):
r"""
Creates a half-normal distribution parameterized by `scale` where::
X ~ Normal(0, scale)
Y = |X| ~ HalfNormal(scale)
Example::
>>> m = HalfNormal(torch.tensor([1.0]))
>>> m.sample() # half-normal distributed with scale=1
tensor([ 0.1046])
Args:
scale (float or Tensor): scale of the full Normal distribution
"""
arg_constraints = {'scale': constraints.positive}
support = constraints.positive
has_rsample = True
def __init__(self, scale, validate_args=None):
base_dist = Normal(0, scale)
super(HalfNormal, self).__init__(base_dist, AbsTransform(),
validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(HalfNormal, _instance)
return super(HalfNormal, self).expand(batch_shape, _instance=new)
@property
def scale(self):
return self.base_dist.scale
@property
def mean(self):
return self.scale * math.sqrt(2 / math.pi)
@property
def variance(self):
return self.scale.pow(2) * (1 - 2 / math.pi)
def log_prob(self, value):
log_prob = self.base_dist.log_prob(value) + math.log(2)
log_prob[value.expand(log_prob.shape) < 0] = -inf
return log_prob
def cdf(self, value):
return 2 * self.base_dist.cdf(value) - 1
def icdf(self, prob):
return self.base_dist.icdf((prob + 1) / 2)
def entropy(self):
return self.base_dist.entropy() - math.log(2)