pytorch/test/distributed/optim/test_zero_redundancy_optimizer.py
Andrew Gu c30659ffcc [ZeRO] (Reland) Add ctor support for multiple param groups (#72932)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/72578.

**Overview**
Windows CI was failing due to the multi-rank single-GPU case (see [here](https://github.com/pytorch/pytorch/runs/5204906995?check_suite_focus=true)).

To address this, I
- added `common_distributed.skip_if_no_gpu` for `test_multiple_param_groups()` to ensure that each rank can safely call `to(self.device)` -- this targets the expected SPSD use case where each rank has its own GPU;
- moved `test_constructor()` back to `TestZeroRedundancyOptimizerSingleRank` to check that the multiple parameter group method for construction works even on a single rank.

**Test Plan**
- I checked both tests for CPU, 1 GPU, 2 GPUs, 4 GPUs, and 8 GPUs.
- I added the `ciflow/win` label to run the failing Windows CI test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72932

Reviewed By: rohan-varma

Differential Revision: D34281482

Pulled By: awgu

fbshipit-source-id: c4fe604ddd9d2c123c3071249741e6b8a6454b6e
(cherry picked from commit 6bea9bcc63)
2022-02-22 16:29:55 +00:00

1283 lines
51 KiB
Python

# Owner(s): ["oncall: distributed"]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import copy
import itertools
import os
import sys
from contextlib import suppress
from typing import Any, List, Type, cast
import numpy as np
import torch
import torch.distributed as dist
import unittest
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import (
allreduce_hook,
)
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, AdamW
from torch.testing._internal import common_distributed, common_utils
from torch.testing._internal.common_utils import (
TEST_WITH_ASAN,
TEST_WITH_DEV_DBG_ASAN,
sandcastle_skip_if,
)
from torch.testing._internal.common_utils import IS_WINDOWS
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
# Use GLOO on GPU when running CUDA + Windows
def _get_backend_for_tests():
return (
dist.Backend.NCCL if not IS_WINDOWS and torch.cuda.is_available()
# Windows only has GLOO, but GLOO GPU works. And use GLOO CPU when
# no GPUs are available.
else dist.Backend.GLOO
)
BACKEND = _get_backend_for_tests()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def check_same_model_params(model_a: torch.nn.Module, model_b: torch.nn.Module, message: str = "") -> None:
for p_a, p_b in zip(model_a.parameters(), model_b.parameters()):
assert torch.allclose(p_a, p_b, atol=1e-3), f"Model parameters differ\n{p_a} {p_b}\n" + message
for b_a, b_b in zip(model_a.buffers(), model_b.buffers()):
assert torch.allclose(b_a, b_b), f"Model buffers differ {b_a} - {b_b}\n" + message
@unittest.skipIf(
TEST_WITH_ASAN or TEST_WITH_DEV_DBG_ASAN, "CUDA + ASAN doesnt work."
)
class TestZeroRedundancyOptimizer(common_distributed.MultiProcessTestCase):
def setUp(self):
super(TestZeroRedundancyOptimizer, self).setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
self._spawn_processes()
@property
def device(self):
return torch.device(self.rank) if torch.cuda.is_available() else torch.device("cpu")
@property
def world_size(self):
return 1
def tearDown(self):
try:
torch.distributed.destroy_process_group()
except AssertionError:
pass
try:
os.remove(self.file_name)
except OSError:
pass
def dist_init(self, rank, world_size=-1, backend=BACKEND):
if (world_size < 1):
world_size = self.world_size
store = dist.FileStore(self.file_name, world_size)
return dist.init_process_group(backend=backend, store=store, rank=rank, world_size=world_size)
# TODO: sandcastle_skip_if does not work here.
@unittest.skipIf(
TEST_WITH_ASAN or TEST_WITH_DEV_DBG_ASAN, "CUDA + ASAN doesnt work."
)
class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer):
def test_state_dict(self):
"""Check that the ZeroRedundancyOptimizer exposes the expected state dict interface,
irrespective of the sharding.
"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.1, momentum=0.9)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
o.zero_grad()
o.consolidate_state_dict() # Sync state dict in between replicas - even if there are none
state_dict = o.state_dict()
# Check that the state dict is pytorch-compliant key wise
self.assertIn("param_groups", state_dict.keys())
self.assertIn("state", state_dict.keys())
# Check that the pulled state is what we expect, and that we have all the expected keys
self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1)
self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9)
self.assertFalse(state_dict["param_groups"][0]["nesterov"])
self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0)
self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0)
# Check that the pulled state and the .param_groups attribute are in sync
for k in state_dict["param_groups"][0].keys():
if k != "params":
self.assertEqual(state_dict["param_groups"][0][k], o.param_groups[0][k])
# Check that it's correctly loaded
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
o.load_state_dict(state_dict)
# Check that state is correct and on proper device
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
# We should now be using a lr of 0.1, both within the optimizer
# and as exposed by the .param_groups attribute
assert o.param_groups[0]["lr"] == 0.1
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.71], device=DEVICE))
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.9], device=DEVICE))
# Check that the exposed param_groups are on the proper device
self.assertEqual(o.param_groups[0]["params"][0].device, x.device)
def test_lr_scheduler(self):
""" Check that a normal torch lr_scheduler is usable with ZeroRedundancyOptimizer"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
o2 = torch.optim.SGD([x2], lr=0.01)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(5):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_step_with_kwargs(self):
""" Check that the `step(**kwargs)` interface is properly exposed"""
self.dist_init(self.rank)
class SGDWithStepKWArg(torch.optim.SGD):
def step(self, closure=None, kwarg=None):
super().step()
kwarg.append(5)
kwarg: List[Any] = []
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithStepKWArg, lr=0.1)
x.backward()
o.step(0, kwarg=kwarg)
self.assertEqual(kwarg, [5])
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_step_with_extra_inner_key(self):
"""Check that an optimizer adding extra keys to the param_groups
is properly handled, in that the new key is exposed to the user
"""
self.dist_init(self.rank)
class SGDWithNewKey(torch.optim.SGD):
# Dummy optimizer which adds a new key to the param groups
def step(self, closure=None):
super().step()
self.param_groups[0]["new_key"] = 0.1
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithNewKey, lr=0.1)
x.backward()
o.step()
self.assertEqual(o.param_groups[0]["new_key"], 0.1)
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_step_without_closure(self):
"""Check that the step() method (without closure) is handlded as expected"""
self.dist_init(self.rank)
class SGDWithoutClosure(torch.optim.SGD):
def step(self):
return super().step()
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithoutClosure, lr=0.1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_zero_grad(self):
"""Check that the zero_grad attribute is properly handled"""
self.dist_init(self.rank)
x = torch.rand(1)
m = torch.nn.Linear(1, 1)
o = ZeroRedundancyOptimizer(m.parameters(), optimizer_class=SGD, lr=0.1)
y = m(x)
y.backward(x)
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
o.zero_grad()
self.assertFalse(m.weight.grad)
self.assertFalse(m.bias.grad)
def test_constructor(self):
"""Check the robustness of the ZeroRedundancyOptimizer constructor by
passing different values for the ``params`` argument."""
self.dist_init(self.rank)
m = torch.nn.Sequential(
torch.nn.Linear(5, 10),
torch.nn.Linear(10, 10),
torch.nn.Linear(10, 10),
)
# Test various constructor inputs in the form: (input, expected error)
ctor_inputs = [
([], ValueError), # empty parameter list
(torch.randn(1), TypeError), # non-iterable: `torch.Tensor`
(1.2, TypeError), # non-iterable: `float`
([
{"params": [l.weight for l in m]},
{"params": [l.bias for l in m]},
], None), # iterable of dict
(list(m.parameters()) + [42], TypeError), # iterable containing invalid type
(m.parameters(), None), # `params` as a generator
(list(m.parameters()), None) # `params` as a list
]
for ctor_input, error in ctor_inputs:
if error:
with self.assertRaises(error):
ZeroRedundancyOptimizer(ctor_input, optimizer_class=SGD, lr=0.01)
else:
ZeroRedundancyOptimizer(ctor_input, optimizer_class=SGD, lr=0.01)
# Test constructing with multiple parameter groups more thoroughly
weight_decay = 0.01
lr = 0.01
betas = (0.9, 0.999)
eps = 1e-8
params = [
{"params": [l.weight for l in m], "weight_decay": 0.},
{"params": [l.bias for l in m], "weight_decay": weight_decay},
]
o = ZeroRedundancyOptimizer(
params, optimizer_class=AdamW,
lr=lr, betas=betas, eps=eps,
)
assert len(o.param_groups) == 2, \
f"Expected 2 ZeRO param groups, but got {len(o.param_groups)}"
assert len(o.optim.param_groups) == 2, \
"Expected 2 local optimizer param groups, but got " \
f"{len(o.optim.param_groups)}"
def test_same_dense_param_type(self):
"""Check that ZeroRedundancyOptimizer raises an exception if the input
parameters include sparse tensors or different dense types.
NOTE: This test should be removed once support for sparse parameters
and varying parameter types is added.
"""
self.dist_init(self.rank)
inputs = [
[torch.sparse_coo_tensor(size=(2, 3))],
[torch.FloatTensor(1), torch.DoubleTensor(1)],
[torch.FloatTensor(1), torch.FloatTensor(1),
torch.sparse_coo_tensor(size=(2, 3))]
]
for input in inputs:
with self.assertRaises(ValueError):
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
@property
def world_size(self):
return min(4, max(2, torch.cuda.device_count()))
@common_distributed.skip_if_rocm
def test_step(self):
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step()` interface"""
if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2):
return
self.dist_init(self.rank, world_size=self.world_size)
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
with context:
x = torch.tensor([float(self.rank + 1)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[1.0]])
m.bias.data = torch.tensor([2.0])
m_zero = copy.deepcopy(m)
m.to(self.device)
m_zero.to(self.device)
lr = 0.1
o = SGD(m.parameters(), lr=lr)
o_zero = ZeroRedundancyOptimizer(m_zero.parameters(), optimizer_class=SGD, lr=lr)
y = m(x)
y.backward(x)
y_zero = m_zero(x)
y_zero.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o.step()
for p in m_zero.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o_zero.step()
self.assertEqual(m.weight, m_zero.weight)
self.assertEqual(m.bias, m_zero.bias)
@common_distributed.skip_if_rocm
def test_step_with_closure(self):
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step(closure)` interface"""
if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2):
return
self.dist_init(self.rank, world_size=self.world_size)
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
with context:
for bucket_view in [False, True]:
x_val = self.rank + 1
weight = 1.0
bias = 2.0
error = 1.0
target = torch.tensor([x_val * weight + bias + error], device=self.device)
loss_fn = torch.nn.L1Loss()
x = torch.tensor([float(x_val)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[weight]])
m.bias.data = torch.tensor([bias])
m.to(self.device)
o = ZeroRedundancyOptimizer(
m.parameters(),
optimizer_class=SGD,
parameters_as_bucket_view=bucket_view,
lr=0.1,
)
y = m(x)
y.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
def closure():
o.zero_grad()
output = m(x)
loss = loss_fn(output, target)
loss.backward()
return loss
loss = o.step(closure=closure)
self.assertEqual(loss, torch.tensor(error))
self.assertEqual(m.weight, torch.tensor([[1.1]]))
self.assertEqual(m.bias, torch.tensor([2.1]))
def test_sharding(self):
""" Check the sharding at construction time
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
`ZeroRedundancyOptimizer._partition_parameters()` in
`zero_redundancy_optimizer.py`.
"""
self.dist_init(self.rank)
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
self.assertEqual(sum([x.numel() for x in o.optim.param_groups[0]["params"]]), sum(sizes))
def test_add_param_group(self):
"""Check that ZeroRedundancyOptimizer properly handles adding a new param_group a posteriori,
and that all ranks get a shard
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
`ZeroRedundancyOptimizer._partition_parameters()` in
`zero_redundancy_optimizer.py`.
"""
self.dist_init(self.rank)
# Test with all parameters trainable to begin with
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable, enforces size-based partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
assert len(o.param_groups) == 1
o.add_param_group({"params": [torch.rand(3, 1)]})
assert len(o.param_groups) == 2
# Verify that added group is added to the correct partition making all have the same elements.
assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
assert len(o.optim.param_groups) == 2
# Test a pathological config with a first big non-trainable param
def some_trainable():
params = []
for size in [100, 3, 5, 2, 6, 4]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable, enforces size-based partitioning
for p in params[1:]:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
assert len(o.param_groups) == 1
o.add_param_group({"params": [torch.rand(3, 1)]})
assert len(o.param_groups) == 2
assert len(o.optim.param_groups) == 2
all_trainable()
some_trainable()
@common_distributed.skip_if_no_gpu
def test_multiple_param_groups(self):
"""
Tests parity between constructing ZeRO with multiple parameter groups
upfront versus adding parameter groups to ZeRO after construction
versus a non-sharded optimizer.
"""
self.dist_init(self.rank)
model1 = torch.nn.Sequential(
torch.nn.Linear(5, 10),
torch.nn.Linear(10, 10),
torch.nn.Linear(10, 5),
)
model2 = copy.deepcopy(model1)
model3 = copy.deepcopy(model1)
model1 = model1.to(self.device)
model2 = model2.to(self.device)
model3 = model3.to(self.device)
batch_size = 8
num_iters = 3
inputs = [
torch.randn(batch_size, 5).to(self.device) for _ in range(num_iters)
]
wd = 0.01
lr = 0.01
# Construct `optim1` with both parameter groups upfront
optim1 = ZeroRedundancyOptimizer(
[
{"params": [l.weight for l in model1], "weight_decay": 0.},
{"params": [l.bias for l in model1], "weight_decay": wd},
],
optimizer_class=AdamW, lr=lr,
)
# Construct `optim2` by adding the second parameter after
optim2 = ZeroRedundancyOptimizer(
[l.weight for l in model2],
optimizer_class=AdamW, lr=lr, weight_decay=0.,
)
optim2.add_param_group(
{"params": [l.bias for l in model2], "weight_decay": wd}
)
# Construct `optim3` as a non-sharded optimizer
optim3 = AdamW(
[
{"params": [l.weight for l in model3], "weight_decay": 0.},
{"params": [l.bias for l in model3], "weight_decay": wd},
], lr=lr,
)
# Check parity over a few iterations
for iter in range(num_iters):
for model, optim in (
(model1, optim1), (model2, optim2), (model3, optim3),
):
optim.zero_grad()
out = model(inputs[iter])
loss = out.sum()
loss.backward()
optim.step()
for layer1, layer2, layer3 in zip(model1, model2, model3):
assert torch.allclose(layer1.weight, layer2.weight)
assert torch.allclose(layer1.weight, layer3.weight)
assert torch.allclose(layer1.bias, layer2.bias)
assert torch.allclose(layer1.bias, layer3.bias)
@common_distributed.skip_if_lt_x_gpu(2)
@common_distributed.skip_if_rocm
def test_collect_shards(self):
""" Check the state consolidation mechanism, and the state dict exposed by ZeroRedundancyOptimizer"""
self.dist_init(self.rank)
RECIPIENT_RANK = 0
# Run a dummy step so that the optimizer state dict exists
batch, input_width, hidden, target_width = 3, 20, 10, 5
target = torch.rand((batch, target_width), device=self.device)
inputs = torch.rand((batch, input_width), device=self.device)
model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
model.to(self.device)
loss_fn = torch.nn.L1Loss()
loss_fn.to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss.backward()
return loss
_ = optimizer.step(closure=closure)
# Update the optimizer state on the reference rank
optimizer.consolidate_state_dict(to=RECIPIENT_RANK)
# Fetch the state on the reference rank
# - check that it has the correct size
# - load it again
if self.rank == RECIPIENT_RANK:
optimizer_state_dict = optimizer.state_dict()
self.assertEqual(len(optimizer_state_dict["state"]), len(list(model.parameters())))
else:
optimizer_state_dict = {}
optimizer_state_dict = _broadcast_object(
optimizer_state_dict,
src_rank=RECIPIENT_RANK,
group=dist.group.WORLD,
device=self.device,
)
# Load the optimizer state dict, check that no exception is raised
optimizer.load_state_dict(optimizer_state_dict)
@sandcastle_skip_if(
IS_WINDOWS,
"Test is flaky on windows: https://github.com/pytorch/pytorch/issues/66059"
)
def test_multiple_groups(self):
""" Check that the ZeroRedundancyOptimizer handles working with multiple process groups"""
self.dist_init(self.rank, self.world_size, dist.Backend.GLOO)
# Only work with the even ranks, to check that the global_rank indexing is properly used
sub_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")
# Make sure that all the ranks get different training data
# So that the sync check in between their models is meaningful
torch.manual_seed(self.rank)
np.random.seed(self.rank)
# Standard deep learning setup
epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
loss_fn = torch.nn.L1Loss().to(self.device)
def check(optimizer):
# Just run a couple of epochs, check that the model is properly updated
for _ in range(epochs):
target = torch.rand((batch, target_width), device=self.device)
inputs = torch.rand((batch, input_width), device=self.device)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss /= self.world_size
loss.backward()
dist.all_reduce(loss, group=process_group) # Not strictly needed for the test below
return loss
_ = optimizer.step(closure=closure)
# Check that all the params are the same on all ranks
for pg in optimizer.param_groups:
for p in pg["params"]:
receptacle = [p.clone() for _ in sub_group_ranks] if self.rank == 0 else []
dist.gather(p, receptacle, dst=0, group=process_group)
if self.rank == 0:
for sync_p in receptacle[1:]:
assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"
if self.rank in sub_group_ranks:
# Model fitting in the broadcast bucket
model = torch.nn.Sequential(
torch.nn.Linear(input_width, hidden),
torch.nn.Linear(hidden, target_width),
).to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(
model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99, process_group=process_group
)
check(optimizer)
# Model not-fitting in the broadcast bucket
model = torch.nn.Sequential(
torch.nn.Linear(input_width, hidden),
torch.nn.Linear(hidden, target_width),
).to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=SGD,
lr=0.1,
momentum=0.99,
process_group=process_group,
)
check(optimizer)
@common_distributed.skip_if_no_gpu
def test_local_optimizer_parity(self):
"""When combined with DDP, check that ZeroRedundancyOptimizer(optimizer) and the same monolithic optimizer
give the exact same results
"""
self.dist_init(self.rank)
BATCHS = 20
with torch.cuda.device(self.rank):
torch.manual_seed(self.rank)
np.random.seed(self.rank)
def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer], maximize: bool = False):
# Any model works. Add one different buffer per rank
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Linear(3, 3),
torch.nn.Linear(3, 3),
)
model.register_buffer("test_buffer", torch.ones((1)) * self.rank)
model.to(self.device)
defaults = dict()
if maximize:
defaults['maximize'] = True
sharded_optimizer = ZeroRedundancyOptimizer(
params=model.parameters(), optimizer_class=optimizer, lr=1e-3, **defaults
)
sharded_ddp_model = DDP(
module=model, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True
)
ddp_model_single = copy.deepcopy(model)
ddp_model_single.to(self.device)
ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3, **defaults)
ddp_model = DDP(
ddp_model_single, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True
)
# The model should be synchronized in between the ranks at construction time, check that
check_same_model_params(sharded_ddp_model, ddp_model, "Models differ from the start")
def check_step():
input_tensor = torch.rand((64, 2))
def closure_ddp(input_tensor=input_tensor):
ddp_optimizer.zero_grad()
ddp_loss = ddp_model(input_tensor).abs().sum()
ddp_loss.backward()
return ddp_loss
def closure_sharded(input_tensor=input_tensor):
sharded_optimizer.zero_grad()
sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
sharded_loss.backward()
return sharded_loss
loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))
assert torch.allclose(
loss_ddp, loss_sharded_optim
), "Losses differ in between Pytorch optim and ZeroRedundancyOptimizer"
check_same_model_params(sharded_ddp_model, ddp_model, "Models differ after a step")
# The models should stay the same in between the ranks
for i in range(BATCHS):
check_step()
# Change the models trainability, check that parity is maintained
# only check after a couple of constant batchs to go through both regimes
if i > BATCHS // 2:
next(ddp_model.parameters()).requires_grad = bool(i % 2)
next(sharded_ddp_model.parameters()).requires_grad = bool(i % 2)
# Check that the checkpoints are compatible
reference_rank = 0
# - get states
ddp_state_dict = ddp_optimizer.state_dict()
sharded_optimizer.consolidate_state_dict(to=reference_rank)
sharded_optim_state_dict = [sharded_optimizer.state_dict() if self.rank == reference_rank else {}]
dist.broadcast_object_list(sharded_optim_state_dict, src=reference_rank, group=dist.group.WORLD)
sharded_optim_state_dict = sharded_optim_state_dict[0]
# - cross load the states
# run one step and check that the models are still the same
ddp_state_dict_ref = copy.deepcopy(ddp_state_dict) # OSS will remove some states
ddp_optimizer.load_state_dict(sharded_optim_state_dict) # mixup on purpose !
sharded_optimizer.load_state_dict(ddp_state_dict)
check_step()
# - self load, rewind, check no problem
# run one step and check that the models are still the same
ddp_optimizer.load_state_dict(ddp_state_dict_ref)
sharded_optimizer.load_state_dict(sharded_optim_state_dict)
check_step()
for opt in [torch.optim.Adam, torch.optim.AdamW, torch.optim.SGD]:
for maximize in (True, False):
check_optimizer_equivalence(opt, maximize=maximize)
def _test_zero_join(self, device):
r"""
Check that the ZeRO join hook allows training with uneven inputs when using the given device.
Arguments:
device (torch.device): device used to store parameters and perform
collective communications.
"""
NUM_INPUTS = 3
NUM_EPOCHS = 2
torch.manual_seed(0)
torch.cuda.manual_seed(0)
rank = self.rank
world_size = self.world_size
is_gpu = device.type == "cuda"
backend = _get_backend_for_tests() if is_gpu else dist.Backend.GLOO
self.dist_init(rank, world_size, backend)
if is_gpu:
torch.cuda.set_device(self.device)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Linear(3, 3),
torch.nn.Linear(3, 3),
)
model.to(device)
# DDP ensures correct gradients in data parallel training, so DDP with
# local optimizers on uneven inputs should be equivalent to ZeRO on
# uneven inputs with gradients being manually set
ddp_model = DDP(model, device_ids=[rank]) if is_gpu else DDP(model)
local_optim = torch.optim.Adam(ddp_model.parameters(), lr=0.01)
zero_model = copy.deepcopy(model)
zero_model.to(device)
zero_optim = ZeroRedundancyOptimizer(zero_model.parameters(), torch.optim.Adam, lr=0.01)
loss_fn = torch.nn.MSELoss()
# Use uneven inputs: rank i has i extra inputs
inputs = [torch.randn(20, 2).to(device) for _ in range(NUM_INPUTS + rank)]
labels = torch.randn(20, 3).to(device)
# Save the gradients and parameters from DDP as the ground truth; do
# so on the last-joining rank (in this case, the largest rank)
grads_at_each_iter = []
params_at_each_iter = []
with ddp_model.join():
for _ in range(NUM_EPOCHS):
for input in inputs:
output = ddp_model(input)
loss_fn(output, labels).backward()
if rank == world_size - 1:
grads = []
for p in ddp_model.parameters():
grads.append(p.grad.detach().clone().to(device))
local_optim.step()
if rank == world_size - 1:
params = []
for p in ddp_model.parameters():
params.append(p.detach().clone().to(device))
grads_at_each_iter.append(grads)
params_at_each_iter.append(params)
# Broadcast the saved gradients and parameters to all of the other
# ranks (which joined early)
grads_and_params = [grads_at_each_iter, params_at_each_iter]
grads_and_params = _broadcast_object(grads_and_params, src_rank=world_size - 1, group=dist.group.WORLD, device=device)
grads_at_each_iter = grads_and_params[0]
params_at_each_iter = grads_and_params[1]
# TODO: Replace this `_broadcast_object` with `broadcast_object_list`
# once the latter supports loading to the destination device instead
# of the source device
# A process must still set the remaining gradients after joining, so we
# define a join hook to do this before the ZeRO join hook
class _JoinGradInfo():
def __init__(self, grads):
self.grads = grads # remaining gradients to set (in order)
self.index = 0
class _SetGradsJoinHook(JoinHook):
def __init__(self, zero_optim, grads):
zero_optim._join_grad_info = _JoinGradInfo(grads)
self.zero = zero_optim
super().__init__()
def main_hook(self):
grads = self.zero._join_grad_info.grads[self.zero._join_grad_info.index]
self.zero._join_grad_info.index += 1
for p, grad in zip(self.zero._all_params, grads):
p.grad = grad.detach().clone().to(device)
class _GradientSetter(Joinable):
def __init__(self):
super().__init__()
def join_hook(self, **kwargs):
assert "zero_optim" in kwargs
assert "grads" in kwargs
zero_optim = kwargs["zero_optim"]
grads = kwargs["grads"]
return _SetGradsJoinHook(zero_optim, grads)
@property
def join_device(self):
return device
@property
def join_process_group(self):
return dist.group.WORLD
num_grads_after_joining = NUM_EPOCHS * (world_size - rank - 1)
grads = grads_at_each_iter[-num_grads_after_joining:]
gradient_setter = _GradientSetter()
iter = 0
with Join([gradient_setter, zero_optim], zero_optim=zero_optim, grads=grads):
for _ in range(NUM_EPOCHS):
for input in inputs:
# Notify join context that this process has not joined
Join.notify_join_context(gradient_setter)
# Set gradients manually
for p, grad in zip(zero_model.parameters(), grads_at_each_iter[iter]):
p.grad = grad.detach().clone().to(device)
# Perform optimizer step and check parity
zero_optim.step()
for p, ddp_p in zip(zero_model.parameters(), params_at_each_iter[iter]):
assert torch.allclose(p, ddp_p), \
"Parameters differ between using ZeRO and local optimizer"
iter += 1
@common_distributed.requires_nccl()
@common_distributed.skip_if_lt_x_gpu(2)
def test_zero_join_gpu(self):
"""Check that the ZeRO join hook allows training with uneven inputs on GPU."""
self._test_zero_join(self.device)
@common_distributed.requires_gloo()
def test_zero_join_cpu(self):
"""Check that the ZeRO join hook allows training with uneven inputs on CPU."""
self._test_zero_join(torch.device("cpu"))
def _test_zero_model_parallel(self, parameters_as_bucket_view: bool):
# Use two processes each with two GPUs
assert self.rank < 2
NUM_EPOCHS = 3
NUM_INPUTS = 5
LR = 0.01
torch.manual_seed(0)
torch.cuda.manual_seed(0)
class ModelParallelModel(torch.nn.Module):
def __init__(self, dev0, dev1):
super().__init__()
self.dev0 = dev0
self.dev1 = dev1
self.net0 = torch.nn.Linear(10, 10).to(dev0)
self.relu = torch.nn.ReLU()
self.net1 = torch.nn.Linear(10, 5).to(dev1)
def forward(self, x):
x = x.to(self.dev0)
x = self.relu(self.net0(x))
x = x.to(self.dev1)
return self.net1(x)
class LocalModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.net0 = torch.nn.Linear(10, 10)
self.relu = torch.nn.ReLU()
self.net1 = torch.nn.Linear(10, 5)
def forward(self, x):
return self.net1(self.relu(self.net0(x)))
dev0 = 2 * self.rank
dev1 = 2 * self.rank + 1
mp_model = ModelParallelModel(dev0, dev1)
ddp_model = DDP(mp_model)
local_model = LocalModel()
cpu_device = torch.device("cpu")
# Ensure the parameters are the same across the two models
local_model.net0.weight = torch.nn.Parameter(mp_model.net0.weight.detach().clone().to(cpu_device))
local_model.net0.bias = torch.nn.Parameter(mp_model.net0.bias.detach().clone().to(cpu_device))
local_model.net1.weight = torch.nn.Parameter(mp_model.net1.weight.detach().clone().to(cpu_device))
local_model.net1.bias = torch.nn.Parameter(mp_model.net1.bias.detach().clone().to(cpu_device))
# Compare parity between DDP with model parallelism using ZeRO and
# a local model using a local optimizer
zero_optim = ZeroRedundancyOptimizer(
ddp_model.parameters(),
optimizer_class=torch.optim.Adam,
parameters_as_bucket_view=parameters_as_bucket_view,
lr=LR
)
local_optim = torch.optim.Adam(local_model.parameters(), lr=LR)
inputs = [torch.randn(20, 10) for _ in range(NUM_INPUTS)]
for _ in range(NUM_EPOCHS):
for input in inputs:
def closure_local():
local_optim.zero_grad()
local_loss = local_model(input).abs().sum()
local_loss.backward()
return local_loss
def closure_ddp():
zero_optim.zero_grad()
ddp_loss = ddp_model(input).abs().sum()
ddp_loss.backward()
return ddp_loss
local_loss = cast(torch.Tensor, local_optim.step(closure=closure_local))
ddp_loss = cast(torch.Tensor, zero_optim.step(closure=closure_ddp)).to(cpu_device)
# Increased tolerances are needed to pass test when using TensorFloat32
# see https://github.com/pytorch/pytorch/issues/67764
assert torch.allclose(
local_loss, ddp_loss, rtol=1e-03
), "Losses differ between local optim and ZeroRedundancyOptimizer"
for local_p, ddp_p in zip(local_model.parameters(), ddp_model.parameters()):
ddp_p = ddp_p.to(cpu_device)
assert torch.allclose(local_p, ddp_p, rtol=1e-03, atol=1e-04), "Models differ after a step"
@common_distributed.skip_if_lt_x_gpu(4)
def test_zero_model_parallel_with_bucket_view(self):
"""
Check that ZeRO works with model parallelism where layers are sharded
across devices when ``parameters_as_bucket_view=True``.
"""
if self.rank >= 2:
return
self.dist_init(self.rank, world_size=2)
self._test_zero_model_parallel(parameters_as_bucket_view=True)
@common_distributed.skip_if_lt_x_gpu(4)
def test_zero_model_parallel_without_bucket_view(self):
"""
Check that ZeRO works with model parallelism where layers are sharded
across devices when ``parameters_as_bucket_view=False``.
"""
if self.rank >= 2:
return
self.dist_init(self.rank, world_size=2)
self._test_zero_model_parallel(parameters_as_bucket_view=False)
def _test_ddp_zero_overlap(
self,
device,
hook_constructor,
gradient_as_bucket_view,
static_graph,
**kwargs,
):
SGD_LR = 0.01
SGD_MOMENTUM = 0.9
SGD_WEIGHT_DECAY = 0.001
NUM_INPUTS = 5
torch.manual_seed(0)
torch.cuda.manual_seed(0)
rank = self.rank
is_gpu = device.type == "cuda"
if is_gpu:
torch.cuda.set_device(device)
models_to_test = [
(
torch.nn.Sequential(
torch.nn.Linear(1000, 2000),
torch.nn.Linear(2000, 500)
),
[torch.randn(1, 1000).to(device) for _ in range(NUM_INPUTS)]
),
]
if HAS_TORCHVISION:
models_to_test.append(
(
torchvision.models.resnet50(),
[torch.randn(1, 3, 3, 1000).to(device) for _ in range(NUM_INPUTS)]
)
)
for (model, inputs) in models_to_test:
# Enable determinism in cudnn operators
with torch.backends.cudnn.flags(
enabled=True, deterministic=True, benchmark=False
):
device_ids = [rank] if is_gpu else None
# Set up the DDP model overlapping with ZeRO
ddp_model_overlap = DDP(
copy.deepcopy(model).to(device),
device_ids=device_ids,
gradient_as_bucket_view=gradient_as_bucket_view
)
if static_graph:
ddp_model_overlap._set_static_graph()
zero_optim = ZeroRedundancyOptimizer(
ddp_model_overlap.parameters(),
optimizer_class=torch.optim.SGD,
overlap_with_ddp=True,
lr=SGD_LR,
momentum=SGD_MOMENTUM,
weight_decay=SGD_WEIGHT_DECAY,
)
ddp_model_overlap.register_comm_hook(
None,
hook_constructor(allreduce_hook, ddp_model_overlap, zero_optim, **kwargs)
)
# Set up the DDP model with local optimizer
ddp_model_local = DDP(
copy.deepcopy(model).to(device),
device_ids=device_ids,
gradient_as_bucket_view=gradient_as_bucket_view
)
if static_graph:
ddp_model_local._set_static_graph()
local_optim = torch.optim.SGD(
ddp_model_local.parameters(),
lr=SGD_LR,
momentum=SGD_MOMENTUM,
weight_decay=SGD_WEIGHT_DECAY
)
# Check that the parameters match initially
for p1, p2 in zip(
ddp_model_overlap.parameters(),
ddp_model_local.parameters()
):
self.assertEqual(p1, p2)
# Save the parameters to ensure they were updated
init_params_overlap = copy.deepcopy(
list(ddp_model_overlap.parameters())
)
# Ensure that this test runs independently
dist.barrier()
# Run the DDP model overlapping with ZeRO
# NOTE: Overlapping currently requires 2 or 3 warmup iterations
# to ensure DDP buckets have been rebuilt (depending on the
# value of `static_graph`)
num_warmup_inputs = 2 if not static_graph else 3
for input in inputs[:num_warmup_inputs]:
output = ddp_model_overlap(input)
loss = output.sum()
loss.backward()
for input in inputs:
zero_optim.zero_grad()
output = ddp_model_overlap(input)
loss = output.sum()
loss.backward()
# Run the DDP model with local optimizer
for input in inputs:
local_optim.zero_grad()
output = ddp_model_local(input)
loss = output.sum()
loss.backward()
local_optim.step()
dist.barrier()
# Check that the parameters are equal
for p1, p2 in zip(
ddp_model_overlap.parameters(),
ddp_model_local.parameters()
):
self.assertEqual(p1, p2)
# Check that the parameters were updated
self.assertNotEqual(init_params_overlap, list(ddp_model_overlap.parameters()))
# Ensure that this test runs independently
dist.barrier()
@common_distributed.skip_if_win32()
@common_distributed.requires_nccl()
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_ddp_with_zero_step_parity_gpu(self):
r"""
Check that overlapping DDP with ZeRO using ``hook_with_zero_step()``
achieves parity with DDP using a local optimizer when running on GPU.
NOTE: The test is skipped if using Windows since functional optimizers
are not currently supported.
"""
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
for gradient_as_bucket_view, static_graph in itertools.product(
[True, False],
[True, False]
):
self._test_ddp_zero_overlap(
torch.device(self.rank),
hook_with_zero_step,
gradient_as_bucket_view,
static_graph
)
# TODO: Add `test_ddp_with_zero_step_parity_cpu()` once the Gloo
# synchronization issue causing hangs is fixed.
@common_distributed.skip_if_win32()
@common_distributed.requires_nccl()
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_ddp_with_zero_step_interleaved_parity_gpu(self):
r"""
Check that overlapping DDP with ZeRO using
``hook_with_zero_step_interleaved()`` achieves parity with DDP using a
local optimizer when running on GPU.
NOTE: The test is skipped if using Windows since functional optimizers
are not currently supported.
"""
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
for gradient_as_bucket_view, static_graph in itertools.product(
[True, False],
[True, False]
):
self._test_ddp_zero_overlap(
torch.device(self.rank),
hook_with_zero_step_interleaved,
gradient_as_bucket_view,
static_graph
)
# TODO: Add `test_ddp_with_zero_step_interleaved_parity_cpu()` once the
# Gloo synchronization issue causing hangs is fixed.
@common_distributed.skip_if_win32()
@common_distributed.requires_nccl()
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_ddp_with_zero_step_uniform_parity_gpu(self):
r"""
Check that overlapping DDP with ZeRO using
``hook_with_zero_step()`` with ``shard_buckets=True``
achieves parity with DDP using a local optimizer when running on GPU.
NOTE: The test is skipped if using Windows since functional optimizers
are not currently supported.
"""
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
for gradient_as_bucket_view, static_graph in itertools.product(
[True, False],
[True, False]
):
self._test_ddp_zero_overlap(
torch.device(self.rank),
hook_with_zero_step,
gradient_as_bucket_view,
static_graph,
shard_buckets=True,
)
# TODO: Add `test_ddp_with_zero_step_uniform_parity_cpu()` once the Gloo
# synchronization issue causing hangs is fixed.
@common_distributed.skip_if_win32()
@common_distributed.requires_nccl()
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_ddp_with_zero_step_interleaved_uniform_parity_gpu(self):
r"""
Check that overlapping DDP with ZeRO using
``hook_with_zero_step()`` with ``shard_buckets=True``
achieves parity with DDP using a local optimizer when running on GPU.
NOTE: The test is skipped if using Windows since functional optimizers
are not currently supported.
"""
self.dist_init(self.rank, self.world_size, dist.Backend.NCCL)
for gradient_as_bucket_view, static_graph in itertools.product(
[True, False],
[True, False]
):
self._test_ddp_zero_overlap(
torch.device(self.rank),
hook_with_zero_step_interleaved,
gradient_as_bucket_view,
static_graph,
shard_buckets=True,
)
# TODO: Add `test_ddp_with_zero_step_interleaved_uniform_parity_cpu()` once
# the Gloo synchronization issue causing hangs is fixed.
if __name__ == "__main__":
# ! unittest should not be used here, else the tests are not properly registered
common_utils.run_tests()