# Owner(s): ["oncall: distributed"] # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import copy import itertools import os import sys from contextlib import suppress from typing import Any, List, Type, cast import numpy as np import torch import torch.distributed as dist import unittest if not dist.is_available(): print("Distributed not available, skipping tests", file=sys.stderr) sys.exit(0) from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import ( hook_with_zero_step, hook_with_zero_step_interleaved, ) from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import ( allreduce_hook, ) from torch.distributed.algorithms.join import Join, Joinable, JoinHook from torch.distributed.optim import ZeroRedundancyOptimizer from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import SGD, AdamW from torch.testing._internal import common_distributed, common_utils from torch.testing._internal.common_utils import ( TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, sandcastle_skip_if, ) from torch.testing._internal.common_utils import IS_WINDOWS try: import torchvision HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False # Use GLOO on GPU when running CUDA + Windows def _get_backend_for_tests(): return ( dist.Backend.NCCL if not IS_WINDOWS and torch.cuda.is_available() # Windows only has GLOO, but GLOO GPU works. And use GLOO CPU when # no GPUs are available. else dist.Backend.GLOO ) BACKEND = _get_backend_for_tests() DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def check_same_model_params(model_a: torch.nn.Module, model_b: torch.nn.Module, message: str = "") -> None: for p_a, p_b in zip(model_a.parameters(), model_b.parameters()): assert torch.allclose(p_a, p_b, atol=1e-3), f"Model parameters differ\n{p_a} {p_b}\n" + message for b_a, b_b in zip(model_a.buffers(), model_b.buffers()): assert torch.allclose(b_a, b_b), f"Model buffers differ {b_a} - {b_b}\n" + message @unittest.skipIf( TEST_WITH_ASAN or TEST_WITH_DEV_DBG_ASAN, "CUDA + ASAN doesnt work." ) class TestZeroRedundancyOptimizer(common_distributed.MultiProcessTestCase): def setUp(self): super(TestZeroRedundancyOptimizer, self).setUp() os.environ["WORLD_SIZE"] = str(self.world_size) self._spawn_processes() @property def device(self): return torch.device(self.rank) if torch.cuda.is_available() else torch.device("cpu") @property def world_size(self): return 1 def tearDown(self): try: torch.distributed.destroy_process_group() except AssertionError: pass try: os.remove(self.file_name) except OSError: pass def dist_init(self, rank, world_size=-1, backend=BACKEND): if (world_size < 1): world_size = self.world_size store = dist.FileStore(self.file_name, world_size) return dist.init_process_group(backend=backend, store=store, rank=rank, world_size=world_size) # TODO: sandcastle_skip_if does not work here. @unittest.skipIf( TEST_WITH_ASAN or TEST_WITH_DEV_DBG_ASAN, "CUDA + ASAN doesnt work." ) class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer): def test_state_dict(self): """Check that the ZeroRedundancyOptimizer exposes the expected state dict interface, irrespective of the sharding. """ self.dist_init(self.rank) x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.1, momentum=0.9) x.backward() o.step() self.assertEqual(x, torch.tensor([0.9], device=DEVICE)) self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE)) o.zero_grad() o.consolidate_state_dict() # Sync state dict in between replicas - even if there are none state_dict = o.state_dict() # Check that the state dict is pytorch-compliant key wise self.assertIn("param_groups", state_dict.keys()) self.assertIn("state", state_dict.keys()) # Check that the pulled state is what we expect, and that we have all the expected keys self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1) self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9) self.assertFalse(state_dict["param_groups"][0]["nesterov"]) self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0) self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0) # Check that the pulled state and the .param_groups attribute are in sync for k in state_dict["param_groups"][0].keys(): if k != "params": self.assertEqual(state_dict["param_groups"][0][k], o.param_groups[0][k]) # Check that it's correctly loaded o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01) o.load_state_dict(state_dict) # Check that state is correct and on proper device self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE)) # We should now be using a lr of 0.1, both within the optimizer # and as exposed by the .param_groups attribute assert o.param_groups[0]["lr"] == 0.1 x.backward() o.step() self.assertEqual(x, torch.tensor([0.71], device=DEVICE)) self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.9], device=DEVICE)) # Check that the exposed param_groups are on the proper device self.assertEqual(o.param_groups[0]["params"][0].device, x.device) def test_lr_scheduler(self): """ Check that a normal torch lr_scheduler is usable with ZeroRedundancyOptimizer""" self.dist_init(self.rank) x = torch.tensor([1.0], device=DEVICE, requires_grad=True) x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01) o2 = torch.optim.SGD([x2], lr=0.01) s = torch.optim.lr_scheduler.StepLR(o, 1) s2 = torch.optim.lr_scheduler.StepLR(o2, 1) for _ in range(5): x.backward() o.zero_grad() o.step() s.step() x2.backward() o2.zero_grad() o2.step() s2.step() self.assertEqual(x, x2) def test_step_with_kwargs(self): """ Check that the `step(**kwargs)` interface is properly exposed""" self.dist_init(self.rank) class SGDWithStepKWArg(torch.optim.SGD): def step(self, closure=None, kwarg=None): super().step() kwarg.append(5) kwarg: List[Any] = [] x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithStepKWArg, lr=0.1) x.backward() o.step(0, kwarg=kwarg) self.assertEqual(kwarg, [5]) self.assertEqual(x, torch.tensor([0.9], device=DEVICE)) def test_step_with_extra_inner_key(self): """Check that an optimizer adding extra keys to the param_groups is properly handled, in that the new key is exposed to the user """ self.dist_init(self.rank) class SGDWithNewKey(torch.optim.SGD): # Dummy optimizer which adds a new key to the param groups def step(self, closure=None): super().step() self.param_groups[0]["new_key"] = 0.1 x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithNewKey, lr=0.1) x.backward() o.step() self.assertEqual(o.param_groups[0]["new_key"], 0.1) self.assertEqual(x, torch.tensor([0.9], device=DEVICE)) def test_step_without_closure(self): """Check that the step() method (without closure) is handlded as expected""" self.dist_init(self.rank) class SGDWithoutClosure(torch.optim.SGD): def step(self): return super().step() x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithoutClosure, lr=0.1) x.backward() o.step() self.assertEqual(x, torch.tensor([0.9], device=DEVICE)) def test_zero_grad(self): """Check that the zero_grad attribute is properly handled""" self.dist_init(self.rank) x = torch.rand(1) m = torch.nn.Linear(1, 1) o = ZeroRedundancyOptimizer(m.parameters(), optimizer_class=SGD, lr=0.1) y = m(x) y.backward(x) self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight)) self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight)) o.zero_grad() self.assertFalse(m.weight.grad) self.assertFalse(m.bias.grad) def test_constructor(self): """Check the robustness of the ZeroRedundancyOptimizer constructor by passing different values for the ``params`` argument.""" self.dist_init(self.rank) m = torch.nn.Sequential( torch.nn.Linear(5, 10), torch.nn.Linear(10, 10), torch.nn.Linear(10, 10), ) # Test various constructor inputs in the form: (input, expected error) ctor_inputs = [ ([], ValueError), # empty parameter list (torch.randn(1), TypeError), # non-iterable: `torch.Tensor` (1.2, TypeError), # non-iterable: `float` ([ {"params": [l.weight for l in m]}, {"params": [l.bias for l in m]}, ], None), # iterable of dict (list(m.parameters()) + [42], TypeError), # iterable containing invalid type (m.parameters(), None), # `params` as a generator (list(m.parameters()), None) # `params` as a list ] for ctor_input, error in ctor_inputs: if error: with self.assertRaises(error): ZeroRedundancyOptimizer(ctor_input, optimizer_class=SGD, lr=0.01) else: ZeroRedundancyOptimizer(ctor_input, optimizer_class=SGD, lr=0.01) # Test constructing with multiple parameter groups more thoroughly weight_decay = 0.01 lr = 0.01 betas = (0.9, 0.999) eps = 1e-8 params = [ {"params": [l.weight for l in m], "weight_decay": 0.}, {"params": [l.bias for l in m], "weight_decay": weight_decay}, ] o = ZeroRedundancyOptimizer( params, optimizer_class=AdamW, lr=lr, betas=betas, eps=eps, ) assert len(o.param_groups) == 2, \ f"Expected 2 ZeRO param groups, but got {len(o.param_groups)}" assert len(o.optim.param_groups) == 2, \ "Expected 2 local optimizer param groups, but got " \ f"{len(o.optim.param_groups)}" def test_same_dense_param_type(self): """Check that ZeroRedundancyOptimizer raises an exception if the input parameters include sparse tensors or different dense types. NOTE: This test should be removed once support for sparse parameters and varying parameter types is added. """ self.dist_init(self.rank) inputs = [ [torch.sparse_coo_tensor(size=(2, 3))], [torch.FloatTensor(1), torch.DoubleTensor(1)], [torch.FloatTensor(1), torch.FloatTensor(1), torch.sparse_coo_tensor(size=(2, 3))] ] for input in inputs: with self.assertRaises(ValueError): ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1) class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer): @property def world_size(self): return min(4, max(2, torch.cuda.device_count())) @common_distributed.skip_if_rocm def test_step(self): """ Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step()` interface""" if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2): return self.dist_init(self.rank, world_size=self.world_size) context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank) with context: x = torch.tensor([float(self.rank + 1)], device=self.device) m = torch.nn.Linear(1, 1) m.weight.data = torch.tensor([[1.0]]) m.bias.data = torch.tensor([2.0]) m_zero = copy.deepcopy(m) m.to(self.device) m_zero.to(self.device) lr = 0.1 o = SGD(m.parameters(), lr=lr) o_zero = ZeroRedundancyOptimizer(m_zero.parameters(), optimizer_class=SGD, lr=lr) y = m(x) y.backward(x) y_zero = m_zero(x) y_zero.backward(x) for p in m.parameters(): dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM) p.grad.data /= self.world_size o.step() for p in m_zero.parameters(): dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM) p.grad.data /= self.world_size o_zero.step() self.assertEqual(m.weight, m_zero.weight) self.assertEqual(m.bias, m_zero.bias) @common_distributed.skip_if_rocm def test_step_with_closure(self): """ Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step(closure)` interface""" if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2): return self.dist_init(self.rank, world_size=self.world_size) context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank) with context: for bucket_view in [False, True]: x_val = self.rank + 1 weight = 1.0 bias = 2.0 error = 1.0 target = torch.tensor([x_val * weight + bias + error], device=self.device) loss_fn = torch.nn.L1Loss() x = torch.tensor([float(x_val)], device=self.device) m = torch.nn.Linear(1, 1) m.weight.data = torch.tensor([[weight]]) m.bias.data = torch.tensor([bias]) m.to(self.device) o = ZeroRedundancyOptimizer( m.parameters(), optimizer_class=SGD, parameters_as_bucket_view=bucket_view, lr=0.1, ) y = m(x) y.backward(x) for p in m.parameters(): dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM) p.grad.data /= self.world_size def closure(): o.zero_grad() output = m(x) loss = loss_fn(output, target) loss.backward() return loss loss = o.step(closure=closure) self.assertEqual(loss, torch.tensor(error)) self.assertEqual(m.weight, torch.tensor([[1.1]])) self.assertEqual(m.bias, torch.tensor([2.1])) def test_sharding(self): """ Check the sharding at construction time NOTE: The correctness of this test depends on the ZeRO implementation using the sorted-greedy partitioning algorithm. For details, see `ZeroRedundancyOptimizer._partition_parameters()` in `zero_redundancy_optimizer.py`. """ self.dist_init(self.rank) sizes = [9, 7, 5, 3] params = [] for size in sizes * self.world_size: params.append(torch.rand(size, 1)) o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1) self.assertEqual(sum([x.numel() for x in o.optim.param_groups[0]["params"]]), sum(sizes)) def test_add_param_group(self): """Check that ZeroRedundancyOptimizer properly handles adding a new param_group a posteriori, and that all ranks get a shard NOTE: The correctness of this test depends on the ZeRO implementation using the sorted-greedy partitioning algorithm. For details, see `ZeroRedundancyOptimizer._partition_parameters()` in `zero_redundancy_optimizer.py`. """ self.dist_init(self.rank) # Test with all parameters trainable to begin with def all_trainable(): params = [] sizes = [9, 7, 5, 3] sizes_world = sizes * self.world_size for size in sizes_world[:-1]: params.append(torch.rand(size, 1)) # Make sure that the params are trainable, enforces size-based partitioning for p in params: p.requires_grad = True o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1) assert len(o.param_groups) == 1 o.add_param_group({"params": [torch.rand(3, 1)]}) assert len(o.param_groups) == 2 # Verify that added group is added to the correct partition making all have the same elements. assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes) assert len(o.optim.param_groups) == 2 # Test a pathological config with a first big non-trainable param def some_trainable(): params = [] for size in [100, 3, 5, 2, 6, 4]: params.append(torch.rand(size, 1)) # Make sure that the params are trainable, enforces size-based partitioning for p in params[1:]: p.requires_grad = True o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1) assert len(o.param_groups) == 1 o.add_param_group({"params": [torch.rand(3, 1)]}) assert len(o.param_groups) == 2 assert len(o.optim.param_groups) == 2 all_trainable() some_trainable() @common_distributed.skip_if_no_gpu def test_multiple_param_groups(self): """ Tests parity between constructing ZeRO with multiple parameter groups upfront versus adding parameter groups to ZeRO after construction versus a non-sharded optimizer. """ self.dist_init(self.rank) model1 = torch.nn.Sequential( torch.nn.Linear(5, 10), torch.nn.Linear(10, 10), torch.nn.Linear(10, 5), ) model2 = copy.deepcopy(model1) model3 = copy.deepcopy(model1) model1 = model1.to(self.device) model2 = model2.to(self.device) model3 = model3.to(self.device) batch_size = 8 num_iters = 3 inputs = [ torch.randn(batch_size, 5).to(self.device) for _ in range(num_iters) ] wd = 0.01 lr = 0.01 # Construct `optim1` with both parameter groups upfront optim1 = ZeroRedundancyOptimizer( [ {"params": [l.weight for l in model1], "weight_decay": 0.}, {"params": [l.bias for l in model1], "weight_decay": wd}, ], optimizer_class=AdamW, lr=lr, ) # Construct `optim2` by adding the second parameter after optim2 = ZeroRedundancyOptimizer( [l.weight for l in model2], optimizer_class=AdamW, lr=lr, weight_decay=0., ) optim2.add_param_group( {"params": [l.bias for l in model2], "weight_decay": wd} ) # Construct `optim3` as a non-sharded optimizer optim3 = AdamW( [ {"params": [l.weight for l in model3], "weight_decay": 0.}, {"params": [l.bias for l in model3], "weight_decay": wd}, ], lr=lr, ) # Check parity over a few iterations for iter in range(num_iters): for model, optim in ( (model1, optim1), (model2, optim2), (model3, optim3), ): optim.zero_grad() out = model(inputs[iter]) loss = out.sum() loss.backward() optim.step() for layer1, layer2, layer3 in zip(model1, model2, model3): assert torch.allclose(layer1.weight, layer2.weight) assert torch.allclose(layer1.weight, layer3.weight) assert torch.allclose(layer1.bias, layer2.bias) assert torch.allclose(layer1.bias, layer3.bias) @common_distributed.skip_if_lt_x_gpu(2) @common_distributed.skip_if_rocm def test_collect_shards(self): """ Check the state consolidation mechanism, and the state dict exposed by ZeroRedundancyOptimizer""" self.dist_init(self.rank) RECIPIENT_RANK = 0 # Run a dummy step so that the optimizer state dict exists batch, input_width, hidden, target_width = 3, 20, 10, 5 target = torch.rand((batch, target_width), device=self.device) inputs = torch.rand((batch, input_width), device=self.device) model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)) model.to(self.device) loss_fn = torch.nn.L1Loss() loss_fn.to(self.device) # With SGD, Momentum is required to get a state to shard optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99) def closure(): optimizer.zero_grad() output = model(inputs) loss = loss_fn(output, target) loss.backward() return loss _ = optimizer.step(closure=closure) # Update the optimizer state on the reference rank optimizer.consolidate_state_dict(to=RECIPIENT_RANK) # Fetch the state on the reference rank # - check that it has the correct size # - load it again if self.rank == RECIPIENT_RANK: optimizer_state_dict = optimizer.state_dict() self.assertEqual(len(optimizer_state_dict["state"]), len(list(model.parameters()))) else: optimizer_state_dict = {} optimizer_state_dict = _broadcast_object( optimizer_state_dict, src_rank=RECIPIENT_RANK, group=dist.group.WORLD, device=self.device, ) # Load the optimizer state dict, check that no exception is raised optimizer.load_state_dict(optimizer_state_dict) @sandcastle_skip_if( IS_WINDOWS, "Test is flaky on windows: https://github.com/pytorch/pytorch/issues/66059" ) def test_multiple_groups(self): """ Check that the ZeroRedundancyOptimizer handles working with multiple process groups""" self.dist_init(self.rank, self.world_size, dist.Backend.GLOO) # Only work with the even ranks, to check that the global_rank indexing is properly used sub_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size))) process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo") # Make sure that all the ranks get different training data # So that the sync check in between their models is meaningful torch.manual_seed(self.rank) np.random.seed(self.rank) # Standard deep learning setup epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5 loss_fn = torch.nn.L1Loss().to(self.device) def check(optimizer): # Just run a couple of epochs, check that the model is properly updated for _ in range(epochs): target = torch.rand((batch, target_width), device=self.device) inputs = torch.rand((batch, input_width), device=self.device) def closure(): optimizer.zero_grad() output = model(inputs) loss = loss_fn(output, target) loss /= self.world_size loss.backward() dist.all_reduce(loss, group=process_group) # Not strictly needed for the test below return loss _ = optimizer.step(closure=closure) # Check that all the params are the same on all ranks for pg in optimizer.param_groups: for p in pg["params"]: receptacle = [p.clone() for _ in sub_group_ranks] if self.rank == 0 else [] dist.gather(p, receptacle, dst=0, group=process_group) if self.rank == 0: for sync_p in receptacle[1:]: assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks" if self.rank in sub_group_ranks: # Model fitting in the broadcast bucket model = torch.nn.Sequential( torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width), ).to(self.device) # With SGD, Momentum is required to get a state to shard optimizer = ZeroRedundancyOptimizer( model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99, process_group=process_group ) check(optimizer) # Model not-fitting in the broadcast bucket model = torch.nn.Sequential( torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width), ).to(self.device) # With SGD, Momentum is required to get a state to shard optimizer = ZeroRedundancyOptimizer( model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99, process_group=process_group, ) check(optimizer) @common_distributed.skip_if_no_gpu def test_local_optimizer_parity(self): """When combined with DDP, check that ZeroRedundancyOptimizer(optimizer) and the same monolithic optimizer give the exact same results """ self.dist_init(self.rank) BATCHS = 20 with torch.cuda.device(self.rank): torch.manual_seed(self.rank) np.random.seed(self.rank) def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer], maximize: bool = False): # Any model works. Add one different buffer per rank model = torch.nn.Sequential( torch.nn.Linear(2, 3), torch.nn.Linear(3, 3), torch.nn.Linear(3, 3), ) model.register_buffer("test_buffer", torch.ones((1)) * self.rank) model.to(self.device) defaults = dict() if maximize: defaults['maximize'] = True sharded_optimizer = ZeroRedundancyOptimizer( params=model.parameters(), optimizer_class=optimizer, lr=1e-3, **defaults ) sharded_ddp_model = DDP( module=model, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True ) ddp_model_single = copy.deepcopy(model) ddp_model_single.to(self.device) ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3, **defaults) ddp_model = DDP( ddp_model_single, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True ) # The model should be synchronized in between the ranks at construction time, check that check_same_model_params(sharded_ddp_model, ddp_model, "Models differ from the start") def check_step(): input_tensor = torch.rand((64, 2)) def closure_ddp(input_tensor=input_tensor): ddp_optimizer.zero_grad() ddp_loss = ddp_model(input_tensor).abs().sum() ddp_loss.backward() return ddp_loss def closure_sharded(input_tensor=input_tensor): sharded_optimizer.zero_grad() sharded_loss = sharded_ddp_model(input_tensor).abs().sum() sharded_loss.backward() return sharded_loss loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp)) loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded)) assert torch.allclose( loss_ddp, loss_sharded_optim ), "Losses differ in between Pytorch optim and ZeroRedundancyOptimizer" check_same_model_params(sharded_ddp_model, ddp_model, "Models differ after a step") # The models should stay the same in between the ranks for i in range(BATCHS): check_step() # Change the models trainability, check that parity is maintained # only check after a couple of constant batchs to go through both regimes if i > BATCHS // 2: next(ddp_model.parameters()).requires_grad = bool(i % 2) next(sharded_ddp_model.parameters()).requires_grad = bool(i % 2) # Check that the checkpoints are compatible reference_rank = 0 # - get states ddp_state_dict = ddp_optimizer.state_dict() sharded_optimizer.consolidate_state_dict(to=reference_rank) sharded_optim_state_dict = [sharded_optimizer.state_dict() if self.rank == reference_rank else {}] dist.broadcast_object_list(sharded_optim_state_dict, src=reference_rank, group=dist.group.WORLD) sharded_optim_state_dict = sharded_optim_state_dict[0] # - cross load the states # run one step and check that the models are still the same ddp_state_dict_ref = copy.deepcopy(ddp_state_dict) # OSS will remove some states ddp_optimizer.load_state_dict(sharded_optim_state_dict) # mixup on purpose ! sharded_optimizer.load_state_dict(ddp_state_dict) check_step() # - self load, rewind, check no problem # run one step and check that the models are still the same ddp_optimizer.load_state_dict(ddp_state_dict_ref) sharded_optimizer.load_state_dict(sharded_optim_state_dict) check_step() for opt in [torch.optim.Adam, torch.optim.AdamW, torch.optim.SGD]: for maximize in (True, False): check_optimizer_equivalence(opt, maximize=maximize) def _test_zero_join(self, device): r""" Check that the ZeRO join hook allows training with uneven inputs when using the given device. Arguments: device (torch.device): device used to store parameters and perform collective communications. """ NUM_INPUTS = 3 NUM_EPOCHS = 2 torch.manual_seed(0) torch.cuda.manual_seed(0) rank = self.rank world_size = self.world_size is_gpu = device.type == "cuda" backend = _get_backend_for_tests() if is_gpu else dist.Backend.GLOO self.dist_init(rank, world_size, backend) if is_gpu: torch.cuda.set_device(self.device) model = torch.nn.Sequential( torch.nn.Linear(2, 3), torch.nn.Linear(3, 3), torch.nn.Linear(3, 3), ) model.to(device) # DDP ensures correct gradients in data parallel training, so DDP with # local optimizers on uneven inputs should be equivalent to ZeRO on # uneven inputs with gradients being manually set ddp_model = DDP(model, device_ids=[rank]) if is_gpu else DDP(model) local_optim = torch.optim.Adam(ddp_model.parameters(), lr=0.01) zero_model = copy.deepcopy(model) zero_model.to(device) zero_optim = ZeroRedundancyOptimizer(zero_model.parameters(), torch.optim.Adam, lr=0.01) loss_fn = torch.nn.MSELoss() # Use uneven inputs: rank i has i extra inputs inputs = [torch.randn(20, 2).to(device) for _ in range(NUM_INPUTS + rank)] labels = torch.randn(20, 3).to(device) # Save the gradients and parameters from DDP as the ground truth; do # so on the last-joining rank (in this case, the largest rank) grads_at_each_iter = [] params_at_each_iter = [] with ddp_model.join(): for _ in range(NUM_EPOCHS): for input in inputs: output = ddp_model(input) loss_fn(output, labels).backward() if rank == world_size - 1: grads = [] for p in ddp_model.parameters(): grads.append(p.grad.detach().clone().to(device)) local_optim.step() if rank == world_size - 1: params = [] for p in ddp_model.parameters(): params.append(p.detach().clone().to(device)) grads_at_each_iter.append(grads) params_at_each_iter.append(params) # Broadcast the saved gradients and parameters to all of the other # ranks (which joined early) grads_and_params = [grads_at_each_iter, params_at_each_iter] grads_and_params = _broadcast_object(grads_and_params, src_rank=world_size - 1, group=dist.group.WORLD, device=device) grads_at_each_iter = grads_and_params[0] params_at_each_iter = grads_and_params[1] # TODO: Replace this `_broadcast_object` with `broadcast_object_list` # once the latter supports loading to the destination device instead # of the source device # A process must still set the remaining gradients after joining, so we # define a join hook to do this before the ZeRO join hook class _JoinGradInfo(): def __init__(self, grads): self.grads = grads # remaining gradients to set (in order) self.index = 0 class _SetGradsJoinHook(JoinHook): def __init__(self, zero_optim, grads): zero_optim._join_grad_info = _JoinGradInfo(grads) self.zero = zero_optim super().__init__() def main_hook(self): grads = self.zero._join_grad_info.grads[self.zero._join_grad_info.index] self.zero._join_grad_info.index += 1 for p, grad in zip(self.zero._all_params, grads): p.grad = grad.detach().clone().to(device) class _GradientSetter(Joinable): def __init__(self): super().__init__() def join_hook(self, **kwargs): assert "zero_optim" in kwargs assert "grads" in kwargs zero_optim = kwargs["zero_optim"] grads = kwargs["grads"] return _SetGradsJoinHook(zero_optim, grads) @property def join_device(self): return device @property def join_process_group(self): return dist.group.WORLD num_grads_after_joining = NUM_EPOCHS * (world_size - rank - 1) grads = grads_at_each_iter[-num_grads_after_joining:] gradient_setter = _GradientSetter() iter = 0 with Join([gradient_setter, zero_optim], zero_optim=zero_optim, grads=grads): for _ in range(NUM_EPOCHS): for input in inputs: # Notify join context that this process has not joined Join.notify_join_context(gradient_setter) # Set gradients manually for p, grad in zip(zero_model.parameters(), grads_at_each_iter[iter]): p.grad = grad.detach().clone().to(device) # Perform optimizer step and check parity zero_optim.step() for p, ddp_p in zip(zero_model.parameters(), params_at_each_iter[iter]): assert torch.allclose(p, ddp_p), \ "Parameters differ between using ZeRO and local optimizer" iter += 1 @common_distributed.requires_nccl() @common_distributed.skip_if_lt_x_gpu(2) def test_zero_join_gpu(self): """Check that the ZeRO join hook allows training with uneven inputs on GPU.""" self._test_zero_join(self.device) @common_distributed.requires_gloo() def test_zero_join_cpu(self): """Check that the ZeRO join hook allows training with uneven inputs on CPU.""" self._test_zero_join(torch.device("cpu")) def _test_zero_model_parallel(self, parameters_as_bucket_view: bool): # Use two processes each with two GPUs assert self.rank < 2 NUM_EPOCHS = 3 NUM_INPUTS = 5 LR = 0.01 torch.manual_seed(0) torch.cuda.manual_seed(0) class ModelParallelModel(torch.nn.Module): def __init__(self, dev0, dev1): super().__init__() self.dev0 = dev0 self.dev1 = dev1 self.net0 = torch.nn.Linear(10, 10).to(dev0) self.relu = torch.nn.ReLU() self.net1 = torch.nn.Linear(10, 5).to(dev1) def forward(self, x): x = x.to(self.dev0) x = self.relu(self.net0(x)) x = x.to(self.dev1) return self.net1(x) class LocalModel(torch.nn.Module): def __init__(self): super().__init__() self.net0 = torch.nn.Linear(10, 10) self.relu = torch.nn.ReLU() self.net1 = torch.nn.Linear(10, 5) def forward(self, x): return self.net1(self.relu(self.net0(x))) dev0 = 2 * self.rank dev1 = 2 * self.rank + 1 mp_model = ModelParallelModel(dev0, dev1) ddp_model = DDP(mp_model) local_model = LocalModel() cpu_device = torch.device("cpu") # Ensure the parameters are the same across the two models local_model.net0.weight = torch.nn.Parameter(mp_model.net0.weight.detach().clone().to(cpu_device)) local_model.net0.bias = torch.nn.Parameter(mp_model.net0.bias.detach().clone().to(cpu_device)) local_model.net1.weight = torch.nn.Parameter(mp_model.net1.weight.detach().clone().to(cpu_device)) local_model.net1.bias = torch.nn.Parameter(mp_model.net1.bias.detach().clone().to(cpu_device)) # Compare parity between DDP with model parallelism using ZeRO and # a local model using a local optimizer zero_optim = ZeroRedundancyOptimizer( ddp_model.parameters(), optimizer_class=torch.optim.Adam, parameters_as_bucket_view=parameters_as_bucket_view, lr=LR ) local_optim = torch.optim.Adam(local_model.parameters(), lr=LR) inputs = [torch.randn(20, 10) for _ in range(NUM_INPUTS)] for _ in range(NUM_EPOCHS): for input in inputs: def closure_local(): local_optim.zero_grad() local_loss = local_model(input).abs().sum() local_loss.backward() return local_loss def closure_ddp(): zero_optim.zero_grad() ddp_loss = ddp_model(input).abs().sum() ddp_loss.backward() return ddp_loss local_loss = cast(torch.Tensor, local_optim.step(closure=closure_local)) ddp_loss = cast(torch.Tensor, zero_optim.step(closure=closure_ddp)).to(cpu_device) # Increased tolerances are needed to pass test when using TensorFloat32 # see https://github.com/pytorch/pytorch/issues/67764 assert torch.allclose( local_loss, ddp_loss, rtol=1e-03 ), "Losses differ between local optim and ZeroRedundancyOptimizer" for local_p, ddp_p in zip(local_model.parameters(), ddp_model.parameters()): ddp_p = ddp_p.to(cpu_device) assert torch.allclose(local_p, ddp_p, rtol=1e-03, atol=1e-04), "Models differ after a step" @common_distributed.skip_if_lt_x_gpu(4) def test_zero_model_parallel_with_bucket_view(self): """ Check that ZeRO works with model parallelism where layers are sharded across devices when ``parameters_as_bucket_view=True``. """ if self.rank >= 2: return self.dist_init(self.rank, world_size=2) self._test_zero_model_parallel(parameters_as_bucket_view=True) @common_distributed.skip_if_lt_x_gpu(4) def test_zero_model_parallel_without_bucket_view(self): """ Check that ZeRO works with model parallelism where layers are sharded across devices when ``parameters_as_bucket_view=False``. """ if self.rank >= 2: return self.dist_init(self.rank, world_size=2) self._test_zero_model_parallel(parameters_as_bucket_view=False) def _test_ddp_zero_overlap( self, device, hook_constructor, gradient_as_bucket_view, static_graph, **kwargs, ): SGD_LR = 0.01 SGD_MOMENTUM = 0.9 SGD_WEIGHT_DECAY = 0.001 NUM_INPUTS = 5 torch.manual_seed(0) torch.cuda.manual_seed(0) rank = self.rank is_gpu = device.type == "cuda" if is_gpu: torch.cuda.set_device(device) models_to_test = [ ( torch.nn.Sequential( torch.nn.Linear(1000, 2000), torch.nn.Linear(2000, 500) ), [torch.randn(1, 1000).to(device) for _ in range(NUM_INPUTS)] ), ] if HAS_TORCHVISION: models_to_test.append( ( torchvision.models.resnet50(), [torch.randn(1, 3, 3, 1000).to(device) for _ in range(NUM_INPUTS)] ) ) for (model, inputs) in models_to_test: # Enable determinism in cudnn operators with torch.backends.cudnn.flags( enabled=True, deterministic=True, benchmark=False ): device_ids = [rank] if is_gpu else None # Set up the DDP model overlapping with ZeRO ddp_model_overlap = DDP( copy.deepcopy(model).to(device), device_ids=device_ids, gradient_as_bucket_view=gradient_as_bucket_view ) if static_graph: ddp_model_overlap._set_static_graph() zero_optim = ZeroRedundancyOptimizer( ddp_model_overlap.parameters(), optimizer_class=torch.optim.SGD, overlap_with_ddp=True, lr=SGD_LR, momentum=SGD_MOMENTUM, weight_decay=SGD_WEIGHT_DECAY, ) ddp_model_overlap.register_comm_hook( None, hook_constructor(allreduce_hook, ddp_model_overlap, zero_optim, **kwargs) ) # Set up the DDP model with local optimizer ddp_model_local = DDP( copy.deepcopy(model).to(device), device_ids=device_ids, gradient_as_bucket_view=gradient_as_bucket_view ) if static_graph: ddp_model_local._set_static_graph() local_optim = torch.optim.SGD( ddp_model_local.parameters(), lr=SGD_LR, momentum=SGD_MOMENTUM, weight_decay=SGD_WEIGHT_DECAY ) # Check that the parameters match initially for p1, p2 in zip( ddp_model_overlap.parameters(), ddp_model_local.parameters() ): self.assertEqual(p1, p2) # Save the parameters to ensure they were updated init_params_overlap = copy.deepcopy( list(ddp_model_overlap.parameters()) ) # Ensure that this test runs independently dist.barrier() # Run the DDP model overlapping with ZeRO # NOTE: Overlapping currently requires 2 or 3 warmup iterations # to ensure DDP buckets have been rebuilt (depending on the # value of `static_graph`) num_warmup_inputs = 2 if not static_graph else 3 for input in inputs[:num_warmup_inputs]: output = ddp_model_overlap(input) loss = output.sum() loss.backward() for input in inputs: zero_optim.zero_grad() output = ddp_model_overlap(input) loss = output.sum() loss.backward() # Run the DDP model with local optimizer for input in inputs: local_optim.zero_grad() output = ddp_model_local(input) loss = output.sum() loss.backward() local_optim.step() dist.barrier() # Check that the parameters are equal for p1, p2 in zip( ddp_model_overlap.parameters(), ddp_model_local.parameters() ): self.assertEqual(p1, p2) # Check that the parameters were updated self.assertNotEqual(init_params_overlap, list(ddp_model_overlap.parameters())) # Ensure that this test runs independently dist.barrier() @common_distributed.skip_if_win32() @common_distributed.requires_nccl() @common_distributed.skip_if_no_gpu @common_distributed.skip_if_rocm def test_ddp_with_zero_step_parity_gpu(self): r""" Check that overlapping DDP with ZeRO using ``hook_with_zero_step()`` achieves parity with DDP using a local optimizer when running on GPU. NOTE: The test is skipped if using Windows since functional optimizers are not currently supported. """ self.dist_init(self.rank, self.world_size, dist.Backend.NCCL) for gradient_as_bucket_view, static_graph in itertools.product( [True, False], [True, False] ): self._test_ddp_zero_overlap( torch.device(self.rank), hook_with_zero_step, gradient_as_bucket_view, static_graph ) # TODO: Add `test_ddp_with_zero_step_parity_cpu()` once the Gloo # synchronization issue causing hangs is fixed. @common_distributed.skip_if_win32() @common_distributed.requires_nccl() @common_distributed.skip_if_no_gpu @common_distributed.skip_if_rocm def test_ddp_with_zero_step_interleaved_parity_gpu(self): r""" Check that overlapping DDP with ZeRO using ``hook_with_zero_step_interleaved()`` achieves parity with DDP using a local optimizer when running on GPU. NOTE: The test is skipped if using Windows since functional optimizers are not currently supported. """ self.dist_init(self.rank, self.world_size, dist.Backend.NCCL) for gradient_as_bucket_view, static_graph in itertools.product( [True, False], [True, False] ): self._test_ddp_zero_overlap( torch.device(self.rank), hook_with_zero_step_interleaved, gradient_as_bucket_view, static_graph ) # TODO: Add `test_ddp_with_zero_step_interleaved_parity_cpu()` once the # Gloo synchronization issue causing hangs is fixed. @common_distributed.skip_if_win32() @common_distributed.requires_nccl() @common_distributed.skip_if_no_gpu @common_distributed.skip_if_rocm def test_ddp_with_zero_step_uniform_parity_gpu(self): r""" Check that overlapping DDP with ZeRO using ``hook_with_zero_step()`` with ``shard_buckets=True`` achieves parity with DDP using a local optimizer when running on GPU. NOTE: The test is skipped if using Windows since functional optimizers are not currently supported. """ self.dist_init(self.rank, self.world_size, dist.Backend.NCCL) for gradient_as_bucket_view, static_graph in itertools.product( [True, False], [True, False] ): self._test_ddp_zero_overlap( torch.device(self.rank), hook_with_zero_step, gradient_as_bucket_view, static_graph, shard_buckets=True, ) # TODO: Add `test_ddp_with_zero_step_uniform_parity_cpu()` once the Gloo # synchronization issue causing hangs is fixed. @common_distributed.skip_if_win32() @common_distributed.requires_nccl() @common_distributed.skip_if_no_gpu @common_distributed.skip_if_rocm def test_ddp_with_zero_step_interleaved_uniform_parity_gpu(self): r""" Check that overlapping DDP with ZeRO using ``hook_with_zero_step()`` with ``shard_buckets=True`` achieves parity with DDP using a local optimizer when running on GPU. NOTE: The test is skipped if using Windows since functional optimizers are not currently supported. """ self.dist_init(self.rank, self.world_size, dist.Backend.NCCL) for gradient_as_bucket_view, static_graph in itertools.product( [True, False], [True, False] ): self._test_ddp_zero_overlap( torch.device(self.rank), hook_with_zero_step_interleaved, gradient_as_bucket_view, static_graph, shard_buckets=True, ) # TODO: Add `test_ddp_with_zero_step_interleaved_uniform_parity_cpu()` once # the Gloo synchronization issue causing hangs is fixed. if __name__ == "__main__": # ! unittest should not be used here, else the tests are not properly registered common_utils.run_tests()