mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/30477. Any type comment after `# type: (...) -> ` is ignored. Pull Request resolved: https://github.com/pytorch/pytorch/pull/30590 Differential Revision: D18887351 Pulled By: driazati fbshipit-source-id: 162c652f6d7610d14609bbcb25aaa27cdd947a76
289 lines
9.6 KiB
Python
289 lines
9.6 KiB
Python
import sys
|
|
import ast
|
|
import inspect
|
|
import re
|
|
import torch
|
|
from .._jit_internal import List, BroadcastingList1, BroadcastingList2, \
|
|
BroadcastingList3, Tuple, is_tuple, is_list, Dict, is_dict, Optional, \
|
|
is_optional, _qualified_name, Any
|
|
from torch._C import TensorType, TupleType, FloatType, IntType, \
|
|
ListType, StringType, DictType, BoolType, OptionalType, ClassType, InterfaceType, AnyType, NoneType, \
|
|
DeviceObjType
|
|
|
|
from textwrap import dedent
|
|
from torch._six import builtins
|
|
from torch._utils_internal import get_source_lines_and_file
|
|
|
|
|
|
PY35 = sys.version_info >= (3, 5)
|
|
|
|
|
|
class Module(object):
|
|
def __init__(self, name, members):
|
|
self.name = name
|
|
self.members = members
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return self.members[name]
|
|
except KeyError:
|
|
raise RuntimeError("Module {} has no member called {}".format(self.name, name))
|
|
|
|
|
|
class EvalEnv(object):
|
|
env = {
|
|
'torch': Module('torch', {'Tensor': torch.Tensor}),
|
|
'Tensor': torch.Tensor,
|
|
'typing': Module('typing', {'Tuple': Tuple}),
|
|
'Tuple': Tuple,
|
|
'List': List,
|
|
'Dict': Dict,
|
|
'Optional': Optional,
|
|
}
|
|
|
|
def __init__(self, rcb):
|
|
self.rcb = rcb
|
|
|
|
def __getitem__(self, name):
|
|
if name in self.env:
|
|
return self.env[name]
|
|
if self.rcb is not None:
|
|
return self.rcb(name)
|
|
return getattr(builtins, name, None)
|
|
|
|
def get_signature(fn, rcb, loc):
|
|
# Python 3.5 adds support for the nice annotation syntax, so try that first.
|
|
if PY35:
|
|
sig = try_real_annotations(fn)
|
|
if sig is not None:
|
|
return sig
|
|
|
|
type_line, source = None, None
|
|
try:
|
|
source = dedent(''.join(get_source_lines_and_file(fn)[0]))
|
|
type_line = get_type_line(source)
|
|
except TypeError:
|
|
pass
|
|
# This might happen both because we failed to get the source of fn, or
|
|
# because it didn't have any annotations.
|
|
if type_line is None:
|
|
return None
|
|
|
|
return parse_type_line(type_line, rcb, loc)
|
|
|
|
|
|
# This is essentially a weaker form of get_signature(), where we don't care if
|
|
# we have the types, we just care that we can figure out how many parameters
|
|
# a function takes.
|
|
def get_num_params(fn, loc):
|
|
try:
|
|
source = dedent(''.join(get_source_lines_and_file(fn)[0]))
|
|
except (TypeError, IOError):
|
|
return None
|
|
if source is None:
|
|
return None
|
|
py_ast = ast.parse(source)
|
|
if len(py_ast.body) == 1 and isinstance(py_ast.body[0], ast.ClassDef):
|
|
raise torch.jit.frontend.FrontendError(
|
|
loc, "Cannot instantiate class '{}' in a script function".format(py_ast.body[0].name))
|
|
if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
|
|
raise torch.jit.frontend.FrontendError(loc, "Expected a single top-level function")
|
|
py_def = py_ast.body[0]
|
|
if py_def.args.vararg is not None:
|
|
return None
|
|
elif hasattr(py_def.args, 'kwonlyargs') and len(py_def.args.kwonlyargs) > 0:
|
|
return None
|
|
else:
|
|
return len(py_def.args.args)
|
|
|
|
|
|
def parse_type_line(type_line, rcb, loc):
|
|
"""Parses a type annotation specified as a comment.
|
|
|
|
Example inputs:
|
|
# type: (Tensor, torch.Tensor) -> Tuple[Tensor]
|
|
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tensor
|
|
"""
|
|
arg_ann_str, ret_ann_str = split_type_line(type_line)
|
|
|
|
try:
|
|
arg_ann = eval(arg_ann_str, {}, EvalEnv(rcb)) # noqa: P204
|
|
except (NameError, SyntaxError) as e:
|
|
raise RuntimeError("Failed to parse the argument list of a type annotation: {}".format(str(e)))
|
|
|
|
if not isinstance(arg_ann, tuple):
|
|
arg_ann = (arg_ann,)
|
|
|
|
try:
|
|
ret_ann = eval(ret_ann_str, {}, EvalEnv(rcb)) # noqa: P204
|
|
except (NameError, SyntaxError) as e:
|
|
raise RuntimeError("Failed to parse the return type of a type annotation: {}".format(str(e)))
|
|
|
|
resolver = (rcb, loc)
|
|
arg_types = [ann_to_type(ann, resolver) for ann in arg_ann]
|
|
return arg_types, ann_to_type(ret_ann, resolver)
|
|
|
|
|
|
def get_type_line(source):
|
|
"""Tries to find the line containing a comment with the type annotation."""
|
|
type_comment = '# type:'
|
|
|
|
lines = source.split('\n')
|
|
lines = [(line_num, line) for line_num, line in enumerate(lines)]
|
|
type_lines = list(filter(lambda line: type_comment in line[1], lines))
|
|
lines_with_type = list(filter(lambda line: 'type' in line[1], lines))
|
|
|
|
if len(type_lines) == 0:
|
|
type_pattern = re.compile('#[\t ]*type[\t ]*:')
|
|
wrong_type_lines = list(filter(lambda line: type_pattern.search(line[1]), lines))
|
|
if len(wrong_type_lines) > 0:
|
|
raise RuntimeError("The annotation prefix in line " + str(wrong_type_lines[0][0])
|
|
+ " is probably invalid.\nIt must be '# type:'"
|
|
+ "\nSee PEP 484 (https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)" # noqa
|
|
+ "\nfor examples")
|
|
return None
|
|
elif len(type_lines) == 1:
|
|
# Only 1 type line, quit now
|
|
return type_lines[0][1].strip()
|
|
|
|
# Parse split up argument types according to PEP 484
|
|
# https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
|
|
return_line = None
|
|
parameter_type_lines = []
|
|
for line_num, line in type_lines:
|
|
if '# type: (...) -> ' in line:
|
|
return_line = (line_num, line)
|
|
break
|
|
elif type_comment in line:
|
|
parameter_type_lines.append(line)
|
|
if return_line is None:
|
|
raise RuntimeError("Return type line '# type: (...) -> ...' not found on multiline "
|
|
"type annotation\n(See PEP 484 https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)") # noqa
|
|
|
|
def get_parameter_type(line):
|
|
item_type = line[line.find(type_comment) + len(type_comment):]
|
|
return item_type.strip()
|
|
|
|
types = map(get_parameter_type, parameter_type_lines)
|
|
parameter_types = ", ".join(types)
|
|
|
|
return return_line[1].replace("...", parameter_types)
|
|
|
|
|
|
def split_type_line(type_line):
|
|
"""Splits the comment with the type annotation into parts for argument and return types.
|
|
|
|
For example, for an input of:
|
|
# type: (Tensor, torch.Tensor) -> Tuple[Tensor, Tensor]
|
|
|
|
This function will return:
|
|
("(Tensor, torch.Tensor)", "Tuple[Tensor, Tensor]")
|
|
|
|
"""
|
|
start_offset = len('# type:')
|
|
try:
|
|
arrow_pos = type_line.index('->')
|
|
except ValueError:
|
|
raise RuntimeError("Syntax error in type annotation (cound't find `->`)")
|
|
return type_line[start_offset:arrow_pos].strip(), type_line[arrow_pos + 2:].strip()
|
|
|
|
|
|
def try_real_annotations(fn):
|
|
"""Tries to use the Py3.5+ annotation syntax to get the type."""
|
|
try:
|
|
sig = inspect.signature(fn)
|
|
except ValueError:
|
|
return None
|
|
|
|
all_annots = [sig.return_annotation] + [p.annotation for p in sig.parameters.values()]
|
|
if all(ann is sig.empty for ann in all_annots):
|
|
return None
|
|
|
|
def as_ann(ann):
|
|
# sig.empty is really annoying so convert it to None
|
|
return ann if ann is not sig.empty else None
|
|
|
|
arg_types = [ann_to_type(as_ann(p.annotation))
|
|
for p in sig.parameters.values()]
|
|
return_type = ann_to_type(as_ann(sig.return_annotation))
|
|
return arg_types, return_type
|
|
|
|
|
|
def ann_to_type(ann, resolver=None):
|
|
# resolver should be a Tuple[Callable, SourceRange] where the Callable
|
|
# is a resolutionCallback
|
|
if ann is None:
|
|
return TensorType.get()
|
|
elif ann is torch.Tensor:
|
|
return TensorType.get()
|
|
elif is_tuple(ann):
|
|
return TupleType([ann_to_type(a) for a in ann.__args__])
|
|
elif is_list(ann):
|
|
return ListType(ann_to_type(ann.__args__[0]))
|
|
elif is_dict(ann):
|
|
key = ann_to_type(ann.__args__[0])
|
|
value = ann_to_type(ann.__args__[1])
|
|
return DictType(key, value)
|
|
elif is_optional(ann):
|
|
if issubclass(ann.__args__[1], type(None)):
|
|
return OptionalType(ann_to_type(ann.__args__[0]))
|
|
else:
|
|
return OptionalType(ann_to_type(ann.__args__[1]))
|
|
elif ann is float:
|
|
return FloatType.get()
|
|
elif ann is int:
|
|
return IntType.get()
|
|
elif ann is str:
|
|
return StringType.get()
|
|
elif ann is bool:
|
|
return BoolType.get()
|
|
elif ann is Any:
|
|
return AnyType.get()
|
|
elif ann is type(None):
|
|
return NoneType.get()
|
|
elif hasattr(ann, "__torch_script_class__"):
|
|
return ClassType(_qualified_name(ann))
|
|
elif hasattr(ann, "__torch_script_interface__"):
|
|
return InterfaceType(_qualified_name(ann))
|
|
elif ann is torch.device:
|
|
return DeviceObjType.get()
|
|
elif resolver is not None:
|
|
# Maybe resolve a NamedTuple to a Tuple Type
|
|
rcb, loc = resolver
|
|
the_type = torch._C._resolve_type(ann.__name__, loc, rcb)
|
|
if the_type is not None:
|
|
return the_type
|
|
raise ValueError("Unknown type annotation: '{}'".format(ann))
|
|
|
|
|
|
__all__ = [
|
|
'Any',
|
|
'List',
|
|
'BroadcastingList1',
|
|
'BroadcastingList2',
|
|
'BroadcastingList3',
|
|
'Tuple',
|
|
'is_tuple',
|
|
'is_list',
|
|
'Dict',
|
|
'is_dict',
|
|
'TensorType',
|
|
'TupleType',
|
|
'FloatType',
|
|
'IntType',
|
|
'ListType',
|
|
'StringType',
|
|
'DictType',
|
|
'AnyType',
|
|
'Module',
|
|
# TODO: Consider not exporting these during wildcard import (reserve
|
|
# that for the types; for idiomatic typing code.)
|
|
'get_signature',
|
|
'get_num_params',
|
|
'parse_type_line',
|
|
'get_type_line',
|
|
'split_type_line',
|
|
'try_real_annotations',
|
|
'ann_to_type',
|
|
]
|