Summary:
Uses new overload mechanism for rnns, making it so that python & torchscript go through the same path and using an API that is in line with the one specified
in https://docs.python.org/3/library/typing.html#typing.overload
This brings the TorchScriptable rnns closer to the base implementation; unifying them should be done in a follow up PR but there are still a few limitations that make it difficult to do so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29614
Differential Revision: D18486982
Pulled By: eellison
fbshipit-source-id: aaaea66a4a7f12d2e46199ca254f9e8f7475500e
Summary:
Uses new overload mechanism for rnns, making it so that python & torchscript go through the same path and using an API that is in line with the one specified
in https://docs.python.org/3/library/typing.html#typing.overload
This brings the TorchScriptable rnns closer to the base implementation; unifying them should be done in a follow up PR but there are still a few limitations that make it difficult to do so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29614
Differential Revision: D18458751
Pulled By: eellison
fbshipit-source-id: 07c71838f21cb5425e8d6dbd4a512f774c8c2970
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26572
Combined with isinstance specialization this allows a degree of polymorphic
functions to work without needing to use our weirder overload hacks.
We do not define any operators on Any, so the only thing you can do with it
is to put it in containers or type refine it using an isinstance check.
Any is restricted from appearing in non-argument position because we
cannot restore type tags if it ends up as a field in a class.
Test Plan: Imported from OSS
Differential Revision: D17530643
Pulled By: zdevito
fbshipit-source-id: f06f78ce84819f7773953a492f3d4c49219ee94c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26666
Changes:
- Introduce a `ConcreteModuleType` concept. This acts both as the key into the type
cache, and as the source of truth for `ModuleValue::attr` queries. It needs
to do both jobs because that's how we ensure correctness (if the types are
different, it's because `ModuleValue::attr` would return different things).
- Now `recursive_script` will first construct a `ConcreteModuleType` and search for a
pre-existing type before starting compilation.
- All previous paths to creating a `ScriptModule` (including inheriting from
`ScriptModule`) are now rewritten to go through `create_script_module`, so
that we have only a single place where construction happens.
Behavioral changes:
- Big change to `torch.jit.ScriptModule` inheritance: all attributes are now
recursively scripted if possible, matching recursive scripting semantics.
This makes it hard to keep something from being scripted (for example, a
Python submodule). Possibly we'll need an `ignore()` type thing for
attributes. In particular, this adds `self.training` to *every* ScriptModule, since
it's present on every `nn.Module`.
- I believe this change to be transparent to existing users of the inheritance API, since if you had an attribute that is unscriptable that you never used, there is no error. In some cases, we will create new attributes (even if they are unused), which will increase serialized model size from before.
Test Plan: Imported from OSS
Differential Revision: D17551196
Pulled By: suo
fbshipit-source-id: b476d1c9feb3ddfd63406d90989aaf9dfe890591
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26734
This PR added the python assignment for interface as an attribute in the
module, it enables any object that implicitly inheriting the specific
interface to be able to be assigned to the interface type in python.
Serialization support for interface/class assignment will be done in the
follow up PR
Test Plan: Imported from OSS
Differential Revision: D17742708
Pulled By: wanchaol
fbshipit-source-id: a0a2d8c74b60ed3fa6c05e1b0d49b7ad1abc670b
Summary:
When used as annotations on Python functions, `NamedTuple`s go through our Python annotation -> type mapping which previously had no way of lookup up `NamedTuple`s (which are created lazily by checking if the type has certain properties, so the lookup is creating the `TupleType` from scratch). This PR threads through the necessary data to make them work.
Fixes#26437
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26443
Pulled By: driazati
Differential Revision: D17486441
fbshipit-source-id: a6bbb543ff05a5abe61f1a7f68db9ecdb652b358
Summary:
If source code is not available due to packaging (e.g. sources are compiled to .pyc), TorchScript produces very obscure error message. This tries to make it nicer and allow to customize message by overriding _utils_internal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25415
Test Plan: Really hard to unittest properly. Did one off testing by compiling to .pyc and checking the message.
Differential Revision: D17118238
Pulled By: dzhulgakov
fbshipit-source-id: 3cbfee0abddc8613000680548bfe0b8ed52a36b0
Summary:
Previously these were left out which would lead to confusing messages,
now it looks something like:
```
torch.jit.frontend.UnsupportedNodeError: import statements aren't
supported
:
at ../test.py:13:9
def bad_fn(self):
import pdb
~~~~~~ <--- HERE
'__torch__.X' is being compiled since it was called from 'fn'
at ../test.py:16:12
def fn(x):
return X(10)
~~~~ <--- HERE
```
Fixes#23453
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23454
Pulled By: driazati
Differential Revision: D16567930
fbshipit-source-id: 251b6f91f37a2816e06bb4c803f9bc172fa1d91b
Summary:
Previously these were left out which would lead to confusing messages,
now it looks something like:
```
torch.jit.frontend.UnsupportedNodeError: import statements aren't
supported
:
at ../test.py:13:9
def bad_fn(self):
import pdb
~~~~~~ <--- HERE
'__torch__.X' is being compiled since it was called from 'fn'
at ../test.py:16:12
def fn(x):
return X(10)
~~~~ <--- HERE
```
Fixes#23453
](https://our.intern.facebook.com/intern/diff/16526027/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23454
Pulled By: driazati
Differential Revision: D16526027
fbshipit-source-id: 109f2968430dbf51ee91b1b3409badfd557d19a4
Summary:
This PR adds a check that prints a warning if a type annotation prefix isn't what mypy expects.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20884
Differential Revision: D15511043
Pulled By: Krovatkin
fbshipit-source-id: 9038e074807832931faaa5f4e69628f94f51fd72
Summary:
TensorList, DoubleList, and BoolList were missing from the pickler, so
this adds them.
As a follow up a lot of the code for these could be templated and cut
down
](https://our.intern.facebook.com/intern/diff/15299106/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20191
Pulled By: driazati
Differential Revision: D15299106
fbshipit-source-id: f10c0c9af9d60a6b7fb8d93cea9f550b1a7e2415
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
resize_ and resize_as resize the input tensor. because our shape analysis
is flow invariant, we don't do shape analysis on any op that relies on a Tensor that can alias a resized Tensor.
E.g. in the following graph the x += 10 x may have been resized.
```
torch.jit.script
def test(x, y):
for i in range(10):
x += 10
x.resize_as_([1 for i in int(range(torch.rand())))
return x
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17518
Differential Revision: D14249835
Pulled By: eellison
fbshipit-source-id: f281b468ccb8c29eeb0f68ca5458cc7246a166d9
Summary:
Made the change requested in #15555
PR was failing build due to a time out error while getting packages using pip.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16416
Differential Revision: D13833873
Pulled By: soumith
fbshipit-source-id: e2200e9e8015558fcd359dfa3d025b25802d62b5
Summary:
Adds `List` to eval environment for type lines and allows `List` to be used on PythonOps (follows the same style as the `Tuple` code), fixes#15661
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15721
Differential Revision: D13578540
Pulled By: driazati
fbshipit-source-id: fce54dc3c0931d8b017b2e3483f0ac53826dda94
Summary:
This PR adds a polyfill for `typing.List` for Python versions that don't
support `typing` as a builtin. It also moves the type defintions from
`annotations.py` so that they can be used in `torch.nn`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14482
Differential Revision: D13237570
Pulled By: driazati
fbshipit-source-id: 6575b7025c2d98198aee3b170f9c4323ad5314bd
Summary:
Arguments have an optional fixed length list field which allows either a list or a single element that will be broadcast to a fixed length.
This PR exposes that as a denotable argument, mostly to cover the many instances in which this used in the standard library. It appears in the standard library with ints & floats. Since this is not really a pattern we want to promote moving forward, I did not expose this for booleans or tensors.
We could consider making the optional static length part of the list type, instead of the argument, which would make some of this code much nicer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13142
Differential Revision: D12876047
Pulled By: eellison
fbshipit-source-id: e7359d2a878b4627fc2b9ebc090f9849ee524693
Summary:
This whitelists train/eval functions in script modules, and tests that nested nn.Modules still work.
This also changes the code for calling python functions from script to allow non-tensor inputs/outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11505
Differential Revision: D9765466
Pulled By: zdevito
fbshipit-source-id: 1177bff931324422b69e18fa0bbaa82e3c98ec69
Summary:
After this, all combinations of {String frontend, Python AST Frontend}{Python 3-style type annotations, MyPy-style type comments}{Script method, Script function} should properly accept type annotations.
Possible TODOs:
- Clean up the functions marked HACK
- Clean up the Subscript tree-view to better match the Python AST versions
- Can we use this for Python functions? That's the only place annotations.get_signature() is still needed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10279
Differential Revision: D9319726
Pulled By: jamesr66a
fbshipit-source-id: b13f7d4f066b0283d4fc1421a1abb9305c3b28fa
Summary:
This lays out initial support for taking and returning a richer set
of types than only tensors. Floats and ints are already valid, lists are
straightforward to add, tuples need some discussion.
Based on top of #9948. Review only the last commit.
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9969
Reviewed By: zdevito
Differential Revision: D9076973
Pulled By: apaszke
fbshipit-source-id: 5a1fe912ea6b79ab2bfd0dcce265eb05855b5ff0