pytorch/caffe2/core/blob_serialization.cc
Rohith Menon 879a90b322 [ModelLoading] Use byte encoding for uint8, fp16 etc. instead of int32 (#34343)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34343

Use byte encoding for uint8, fp16 etc. instead of int32 in TensorProto serialization/deserialization

tl;dr
- fp16 tensor deserialization 12x faster, serialized size 25% lower
- uint8 tensor deserialization 36x faster, serialized size 25% lower

Test Plan:
```
============================================================================
caffe2/caffe2/fb/predictor/ModelLoaderBenchmark.cpprelative  time/iter  iters/s
============================================================================
BlobProtoInt32DeserializationFloat16                        12.37ms    80.82
BlobProtoByteDeserializationFloat16             1125.46%     1.10ms   909.64
----------------------------------------------------------------------------
BlobProtoInt32DeserializationUInt8                          17.57ms    56.92
BlobProtoByteDeserializationUInt8               3629.45%   484.02us    2.07K
============================================================================
```

Reviewed By: yinghai

Differential Revision: D20137451

fbshipit-source-id: 8ed4be2286a6d4c7e134fcb0832f22bc645039a1
2020-03-06 11:58:30 -08:00

708 lines
23 KiB
C++

#include "caffe2/core/blob_serialization.h"
#include <mutex>
#include <sstream>
#include "caffe2/core/blob.h"
#include "caffe2/utils/proto_utils.h"
C10_DEFINE_int(
caffe2_tensor_chunk_size,
1000000,
"Chunk size to split tensor data into");
C10_DEFINE_int(
caffe2_max_tensor_serializer_threads,
16,
"Maximal number of threads that can be used for tensor serialization");
C10_DEFINE_bool(
caffe2_serialize_fp16_as_bytes,
false,
"Serialize FLOAT16 tensors using byte_data field");
C10_DEFINE_bool(
caffe2_serialize_using_bytes_as_holder,
false,
"Serialize BOOL, UINT8, INT8, UINT16, INT16, INT64, FLOAT16 tensors using byte_data field instead of int32");
#ifdef _MSC_VER
// It's MSVC, so we just have to guess ... and allow an override
#ifdef FOLLY_ENDIAN_BE
constexpr auto kIsLittleEndian = false;
#else
constexpr auto kIsLittleEndian = true;
#endif
#else
constexpr auto kIsLittleEndian = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__;
#endif
namespace caffe2 {
/**
* @brief StringSerializer is the serializer for String.
*
* StringSerializer takes in a blob that contains a String, and serializes it
* into a BlobProto protocol buffer.
*/
class StringSerializer : public BlobSerializerBase {
public:
StringSerializer() {}
~StringSerializer() override {}
/**
* Serializes a Blob. Note that this blob has to contain Tensor,
* otherwise this function produces a fatal error.
*/
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<std::string>());
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type("std::string");
blob_proto.set_content(*static_cast<const std::string*>(pointer));
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
};
/**
* @brief StringDeserializer is the deserializer for Strings.
*
*/
class StringDeserializer : public BlobDeserializerBase {
public:
void Deserialize(const BlobProto& proto, Blob* blob) override {
*blob->GetMutable<std::string>() = proto.content();
}
};
namespace {
void SerializeBlob(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
std::unique_ptr<BlobSerializerBase> serializer(
CreateSerializer(typeMeta.id()));
CAFFE_ENFORCE(serializer, "No known serializer for ", typeMeta.name());
serializer->SerializeWithChunkSize(
pointer, typeMeta, name, acceptor, chunk_size);
}
std::string
SerializeBlob(const void* pointer, TypeMeta typeMeta, const string& name) {
std::string data;
BlobSerializerBase::SerializationAcceptor acceptor =
[&data](const std::string&, const std::string& blob_str) {
DCHECK(data.empty()); // should be called once with kNoChunking
data = blob_str;
};
SerializeBlob(pointer, typeMeta, name, acceptor, kNoChunking);
return data;
}
} // namespace
void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
SerializeBlob(blob.GetRaw(), blob.meta(), name, acceptor, chunk_size);
}
std::string SerializeBlob(const Blob& blob, const string& name) {
return SerializeBlob(blob.GetRaw(), blob.meta(), name);
}
void TensorSerializer::Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) {
this->SerializeWithChunkSize(
pointer, typeMeta, name, acceptor, kDefaultChunkSize);
}
void TensorSerializer::SerializeWithChunkSize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
CAFFE_ENFORCE(typeMeta.Match<Tensor>());
const auto& tensor = *static_cast<const Tensor*>(pointer);
if (chunk_size == kNoChunking) {
chunk_size = tensor.numel() + 1; // to account for empty tensors
} else if (chunk_size == kDefaultChunkSize) {
chunk_size = FLAGS_caffe2_tensor_chunk_size;
}
auto processChunk = [&](int64_t chunkStart) {
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(kTensorBlobType);
TensorProto& proto = *blob_proto.mutable_tensor();
proto.set_name(name);
this->Serialize(
tensor, name, blob_proto.mutable_tensor(), chunkStart, chunk_size);
acceptor(
c10::str(name, kChunkIdSeparator, chunkStart / chunk_size),
SerializeBlobProtoAsString_EnforceCheck(blob_proto));
};
#ifndef __ANDROID__
// Poorman's IOBound ThreadPool
SimpleQueue<size_t> chunkQueue;
auto task = [&]() {
size_t chunkStart;
while (chunkQueue.Pop(&chunkStart)) {
processChunk(chunkStart);
}
};
std::vector<std::future<void>> futures;
if (tensor.numel() > chunk_size) {
futures.reserve(FLAGS_caffe2_max_tensor_serializer_threads);
for (int i = 0; i < FLAGS_caffe2_max_tensor_serializer_threads; ++i) {
futures.emplace_back(std::async(std::launch::async, task));
}
}
#endif
VLOG(1) << "Serializing blob " << name;
// Serialize whole vector. If vector is empty, it's shape still needs to be
// serialized in empty proto
for (size_t chunkBegin = 0;
chunkBegin < std::max(tensor.numel(), static_cast<int64_t>(1));
chunkBegin += chunk_size) {
VLOG(2) << "Starting a chunk at " << chunkBegin;
#ifndef __ANDROID__
if (tensor.numel() > chunk_size) {
chunkQueue.Push(chunkBegin);
} else {
// Sync mode for small tensors
processChunk(chunkBegin);
}
#else
// Since Android does not have std::future, we will always do sync mode
processChunk(chunkBegin);
#endif
}
#ifndef __ANDROID__
chunkQueue.NoMoreJobs();
for (auto& fut : futures) {
fut.get();
}
#endif
}
static bool EnableByteEncoding(
const TensorProto::DataType& dataType,
const size_t& typeSize) {
// if typeSize == 1, endianness does not matter. Else check for endianness.
bool ret = false;
bool safeForEndianness = (typeSize == 1 || kIsLittleEndian);
if (safeForEndianness) {
ret = FLAGS_caffe2_serialize_using_bytes_as_holder;
// Check if special casing for float is enabled if
// caffe2_serialize_using_bytes_as_holder is not enabled.
if (!ret) {
ret =
(dataType == TensorProto_DataType_FLOAT16 &&
FLAGS_caffe2_serialize_fp16_as_bytes);
}
}
return ret;
}
template <typename T, typename S = T>
static void SerializeUsingBytesOrInt32(
const Tensor& input,
const TensorProto::DataType& dataType,
size_t chunkBegin,
int32_t chunkSize,
BaseContext* context,
TensorProto& proto) {
const auto typeSize = sizeof(T);
if (EnableByteEncoding(dataType, typeSize)) {
const auto bufSize = typeSize * chunkSize;
auto* byteData =
reinterpret_cast<const uint8_t*>(input.template data<S>() + chunkBegin);
unique_ptr<uint8_t[]> buffer(new uint8_t[bufSize]);
context->template CopyToCPU<uint8_t>(bufSize, byteData, buffer.get());
context->FinishDeviceComputation();
proto.set_byte_data(buffer.release(), bufSize);
} else {
detail::CopyToProtoWithCast(
chunkSize,
reinterpret_cast<const T*>(input.template data<S>()) + chunkBegin,
proto.mutable_int32_data(),
context);
}
}
void TensorSerializer::Serialize(
const Tensor& input,
const string& name,
TensorProto* proto_ptr,
size_t chunkBegin,
int32_t chunkSize) {
CAFFE_ENFORCE(
chunkBegin <= input.numel(),
"Chunk begin is out of tensor: ",
chunkBegin,
' ',
input.numel());
if (chunkBegin + chunkSize > input.numel()) {
chunkSize = input.numel() - chunkBegin;
}
if (chunkSize != 0) {
CAFFE_ENFORCE(
input.raw_data(),
"The input does not have data input yet. This is probably because you "
"created a tensor of non-zero shape but never filled its data via "
"mutable_data() calls. This means that it makes no sense to serialize "
"the tensor content.");
} else if (!input.dtype_initialized()) {
C10_LOG_EVERY_MS(WARNING, 1000)
<< "You're trying to serialize tensor with zero numel and no dtype. "
<< "This is a legacy behavior and it WILL BREAK. Contact PyTorch team "
<< "for details. Offending blob name: " << name;
}
TensorProto& proto = *proto_ptr;
proto.mutable_segment()->set_begin(chunkBegin);
proto.mutable_segment()->set_end(chunkBegin + chunkSize);
for (int i = 0; i < input.dim(); ++i) {
proto.add_dims(input.size(i));
}
const TensorProto::DataType data_type = TypeMetaToDataType(input.dtype());
proto.set_data_type(data_type);
StoreDeviceDetail(input, &proto);
// TODO: use CUDAGuard here instead of context and employ explicit sync
// copy
auto uniq_ptr = CreateContext(input.GetDevice());
// A lot of copypaste is error prone. Should we create a macro for this?
switch (data_type) {
case TensorProto_DataType_FLOAT:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<float>() + chunkBegin,
proto.mutable_float_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT32:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_BYTE:
LOG(FATAL) << "This should not happen. When serializing, "
"BYTE is deprecated and moved to UINT8.";
break;
case TensorProto_DataType_STRING: {
proto.mutable_string_data()->Reserve(chunkSize);
const string* content = input.template data<string>();
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(content[i]);
}
break;
}
case TensorProto_DataType_BOOL:
SerializeUsingBytesOrInt32<bool>(
input, data_type, chunkBegin, chunkSize, uniq_ptr.get(), proto);
break;
case TensorProto_DataType_UINT8:
SerializeUsingBytesOrInt32<uint8_t>(
input, data_type, chunkBegin, chunkSize, uniq_ptr.get(), proto);
break;
case TensorProto_DataType_INT8:
SerializeUsingBytesOrInt32<int8_t>(
input, data_type, chunkBegin, chunkSize, uniq_ptr.get(), proto);
break;
case TensorProto_DataType_UINT16:
SerializeUsingBytesOrInt32<uint16_t>(
input, data_type, chunkBegin, chunkSize, uniq_ptr.get(), proto);
break;
case TensorProto_DataType_INT16:
SerializeUsingBytesOrInt32<int16_t>(
input, data_type, chunkBegin, chunkSize, uniq_ptr.get(), proto);
break;
case TensorProto_DataType_INT64:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int64_t>() + chunkBegin,
proto.mutable_int64_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_FLOAT16:
SerializeUsingBytesOrInt32<uint16_t, at::Half>(
input, data_type, chunkBegin, chunkSize, uniq_ptr.get(), proto);
break;
case TensorProto_DataType_DOUBLE:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<double>() + chunkBegin,
proto.mutable_double_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UNDEFINED: {
proto.mutable_string_data()->Reserve(chunkSize);
if (chunkSize > 0) {
const char* raw_data = static_cast<const char*>(input.raw_data());
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(SerializeBlob(
raw_data + i * input.itemsize(), input.dtype(), ""));
}
}
} break;
case TensorProto_DataType_ZERO_COLLISION_HASH: {
CAFFE_ENFORCE(
false,
"Serialization for zero collision hash type is supported by specialized serializer ZeroCollisionIdHashSerializer");
} break;
// Note: we intentially do not provide "default:" so if any new data types
// are added, the compiler should warn the user to add the case here.
}
}
int GetGPUIDForPointer(const void* ptr);
void TensorSerializer::StoreDeviceDetail(
const Tensor& input,
TensorProto* proto) {
ExtractDeviceOption(proto->mutable_device_detail(), input.GetDevice());
}
// The actual serialization registry objects.
C10_DEFINE_TYPED_REGISTRY(
BlobSerializerRegistry,
TypeIdentifier,
BlobSerializerBase,
std::unique_ptr);
C10_DEFINE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
void DeserializeBlob(const string& content, Blob* result) {
BlobProto blob_proto;
CAFFE_ENFORCE(
blob_proto.ParseFromString(content),
"Cannot parse content into a BlobProto.");
DeserializeBlob(blob_proto, result);
}
void DeserializeBlob(const BlobProto& blob_proto, Blob* result) {
if (blob_proto.type() == kTensorBlobType) {
// This is a tensor object. Depending on the device type, we will
// use the corresponding TensorDeserializer.
auto deserializer = CreateDeserializer(
"Tensor" +
DeviceTypeName(blob_proto.tensor().device_detail().device_type()));
// Tensor's deserializer should always be registered, but we will double
// check if it is not null anyway.
CAFFE_ENFORCE(deserializer.get());
deserializer->Deserialize(blob_proto, result);
} else {
auto deserializer = CreateDeserializer(blob_proto.type());
CAFFE_ENFORCE(
deserializer.get(),
"No registered deserializer for type ",
blob_proto.type());
deserializer->Deserialize(blob_proto, result);
}
}
// === Local helper functions ===
// Get dimensions from Tensor proto
static std::vector<int64_t> DimsFromTensorProto(const TensorProto& proto) {
std::vector<int64_t> dims;
dims.reserve(proto.dims().size());
for (const int64_t d : proto.dims()) {
dims.push_back(d);
}
return dims;
}
// Get number of elements from Tensor proto
static int64_t NumelFromTensorProto(const TensorProto& tensor_proto) {
int64_t numel = 1;
for (const int64_t d : tensor_proto.dims()) {
numel *= d;
}
return numel;
}
// Get data type from Tensor proto
static TypeMeta GetDataType(const TensorProto& tensor_proto) {
TypeMeta dtype;
if (tensor_proto.data_type() != TensorProto_DataType_UNDEFINED) {
dtype = DataTypeToTypeMeta(tensor_proto.data_type());
} else {
Blob temp_blob;
DeserializeBlob(tensor_proto.string_data(0), &temp_blob);
dtype = temp_blob.meta();
}
return dtype;
}
// Get TensorOptions from Tensor proto
// Assumes TensorProto is not empty
static at::TensorOptions TensorOptionsFromProto(
const TensorProto& tensor_proto) {
return at::dtype(GetDataType(tensor_proto))
.device(OptionToDevice(tensor_proto.device_detail()));
}
static std::unique_ptr<BaseContext> ContextFromProto(
const TensorProto& tensor_proto) {
auto device = OptionToDevice(tensor_proto.device_detail());
return CreateContext(device);
}
// === Local helper functions ===
Tensor EmptyTensorFromProto(const TensorProto& tensor_proto) {
auto context = ContextFromProto(tensor_proto);
context->SwitchToDevice();
if (NumelFromTensorProto(tensor_proto) == 0 &&
tensor_proto.data_type() == TensorProto_DataType_UNDEFINED) {
// TODO: remove when serialization of dtype uninitialized tensor is removed
return caffe2::empty(
{0},
at::dtype<float>().device(
OptionToDevice(tensor_proto.device_detail())));
} else {
return caffe2::empty(
DimsFromTensorProto(tensor_proto),
TensorOptionsFromProto(tensor_proto));
}
}
void TensorDeserializer::Deserialize(const BlobProto& blob_proto, Blob* blob) {
auto tensor_proto = blob_proto.tensor();
auto context = ContextFromProto(tensor_proto);
context->SwitchToDevice();
if (NumelFromTensorProto(tensor_proto) == 0 &&
tensor_proto.data_type() == TensorProto_DataType_UNDEFINED) {
// TODO: remove after empty Tensor serialization is forbidden
VLOG(1) << "Deseriralizing an empty Tensor.";
BlobGetMutableTensor(
blob,
{0},
at::dtype<float>().device(
OptionToDevice(tensor_proto.device_detail())));
} else {
DeserializeToTensor(
tensor_proto,
BlobGetMutableTensor(
blob,
DimsFromTensorProto(tensor_proto),
TensorOptionsFromProto(tensor_proto)));
}
}
template <typename T, typename D = T>
void DeserializeFromBytesOrInt32(
const TensorProto& tensor_proto,
size_t chunkBegin,
int32_t chunkSize,
BaseContext* context,
Tensor* tensor) {
if (tensor_proto.has_byte_data()) {
auto typeSize = sizeof(T);
CAFFE_ENFORCE(
kIsLittleEndian || typeSize == 1,
"Serialization with bytes not supported on big endian platform.");
size_t numElems = tensor_proto.byte_data().size();
if (tensor_proto.data_type() == TensorProto_DataType_UINT8) {
if (tensor_proto.has_segment()) {
const auto& segment = tensor_proto.segment();
numElems = segment.end() - segment.begin();
}
}
CAFFE_ENFORCE_EQ(
typeSize * chunkSize, numElems, "Incorrect proto field size.");
const uint8_t* protoData =
reinterpret_cast<const uint8_t*>(tensor_proto.byte_data().data());
context->template CopyToCPU<D>(
chunkSize,
reinterpret_cast<const D*>(protoData),
tensor->template mutable_data<D>() + chunkBegin);
} else {
// Backward compatibility with models which used int32_data field
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
reinterpret_cast<T*>(tensor->template mutable_data<D>()) + chunkBegin,
context);
}
}
void TensorDeserializer::DeserializeToTensor(
const TensorProto& tensor_proto,
Tensor* tensor) {
CAFFE_ENFORCE(
tensor->storage_initialized() && tensor->dtype_initialized(),
"Tensor must be initialized before passed into Deserialize function.");
// We create a local context for deserializing. Since Caffe2 contexts are
// usually lightweight, this should not involve too much overhead.
auto uniq_ptr = ContextFromProto(tensor_proto);
// since CopyFromProtoAsIs accepts BaseContext*
auto context = uniq_ptr.get();
context->SwitchToDevice();
int64_t chunkBegin = 0;
auto chunkEnd = tensor->numel();
if (tensor_proto.has_segment()) {
chunkBegin = tensor_proto.segment().begin();
chunkEnd = tensor_proto.segment().end();
}
CAFFE_ENFORCE(
0 <= chunkBegin && chunkBegin <= chunkEnd && chunkEnd <= tensor->numel(),
"Invalid chunk ",
chunkBegin,
' ',
chunkEnd,
" with total tensor size ",
tensor->numel());
auto chunkSize = chunkEnd - chunkBegin;
switch (tensor_proto.data_type()) {
case TensorProto_DataType_FLOAT:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.float_data(),
tensor->template mutable_data<float>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT32:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<int>() + chunkBegin,
context);
break;
case TensorProto_DataType_BYTE:
// Since BYTE stores the data in a string field instead of a repreated
// field we will have it special cased.
CAFFE_ENFORCE_EQ(
chunkSize,
tensor_proto.byte_data().size(),
"Incorrect proto field size.");
context->template CopyToCPU<uint8_t>(
chunkSize,
reinterpret_cast<const uint8_t*>(tensor_proto.byte_data().data()),
tensor->template mutable_data<uint8_t>() + chunkBegin);
break;
case TensorProto_DataType_STRING:
// Special handing of string because it is a non-fundamental type.
{
string* content = tensor->template mutable_data<string>();
for (int i = 0; i < chunkSize; ++i) {
content[i + chunkBegin] = tensor_proto.string_data(i);
}
}
break;
case TensorProto_DataType_BOOL:
DeserializeFromBytesOrInt32<bool>(
tensor_proto, chunkBegin, chunkSize, context, tensor);
break;
case TensorProto_DataType_UINT8:
DeserializeFromBytesOrInt32<uint8_t>(
tensor_proto, chunkBegin, chunkSize, context, tensor);
break;
case TensorProto_DataType_INT8:
DeserializeFromBytesOrInt32<int8_t>(
tensor_proto, chunkBegin, chunkSize, context, tensor);
break;
case TensorProto_DataType_UINT16:
DeserializeFromBytesOrInt32<uint16_t>(
tensor_proto, chunkBegin, chunkSize, context, tensor);
break;
case TensorProto_DataType_INT16:
DeserializeFromBytesOrInt32<int16_t>(
tensor_proto, chunkBegin, chunkSize, context, tensor);
break;
case TensorProto_DataType_INT64:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.int64_data(),
tensor->template mutable_data<int64_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_FLOAT16:
DeserializeFromBytesOrInt32<uint16_t, at::Half>(
tensor_proto, chunkBegin, chunkSize, context, tensor);
break;
case TensorProto_DataType_DOUBLE:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.double_data(),
tensor->template mutable_data<double>() + chunkBegin,
context);
break;
case TensorProto_DataType_UNDEFINED: {
Blob temp_blob;
void* raw_ptr = nullptr;
for (int i = 0; i < chunkSize; ++i) {
DeserializeBlob(tensor_proto.string_data(i), &temp_blob);
if (i == 0) {
raw_ptr = tensor->raw_mutable_data(temp_blob.meta());
}
temp_blob.meta().copy()(
temp_blob.GetRaw(),
static_cast<char*>(raw_ptr) +
(i + chunkBegin) * temp_blob.meta().itemsize(),
1);
}
} break;
case TensorProto_DataType_ZERO_COLLISION_HASH: {
CAFFE_ENFORCE(
false,
"Deserialization for zero collision hash type is supported by specialized deserializer ZeroCollisionIdHashDeserializer");
} break;
// Note: we intentially do not provide "default:" so if any new data types
}
context->FinishDeviceComputation();
}
Tensor TensorDeserializer::Deserialize(const TensorProto& tensor_proto) {
auto tensor = EmptyTensorFromProto(tensor_proto);
DeserializeToTensor(tensor_proto, &tensor);
return tensor;
}
////////////////////////////////////////////////////////////////////////////////
// Serialization Helpers
////////////////////////////////////////////////////////////////////////////////
std::string SerializeAsString_EnforceCheck(
const google::protobuf::MessageLite& msg,
const char* error_location) {
std::string serialize_output;
bool result = msg.SerializeToString(&serialize_output);
if (!error_location) {
CAFFE_ENFORCE(result, "protobuf::SerializeToString failed");
} else {
CAFFE_ENFORCE(
result, "protobuf::SerializeToString failed for ", error_location);
}
return serialize_output;
}
namespace {
// Serialize Tensor
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<Tensor>()), TensorSerializer);
REGISTER_BLOB_DESERIALIZER(TensorCPU, TensorDeserializer);
// Serialize std::string
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<std::string>()), StringSerializer);
REGISTER_BLOB_DESERIALIZER(std::string, StringDeserializer);
} // namespace
} // namespace caffe2