mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34343 Use byte encoding for uint8, fp16 etc. instead of int32 in TensorProto serialization/deserialization tl;dr - fp16 tensor deserialization 12x faster, serialized size 25% lower - uint8 tensor deserialization 36x faster, serialized size 25% lower Test Plan: ``` ============================================================================ caffe2/caffe2/fb/predictor/ModelLoaderBenchmark.cpprelative time/iter iters/s ============================================================================ BlobProtoInt32DeserializationFloat16 12.37ms 80.82 BlobProtoByteDeserializationFloat16 1125.46% 1.10ms 909.64 ---------------------------------------------------------------------------- BlobProtoInt32DeserializationUInt8 17.57ms 56.92 BlobProtoByteDeserializationUInt8 3629.45% 484.02us 2.07K ============================================================================ ``` Reviewed By: yinghai Differential Revision: D20137451 fbshipit-source-id: 8ed4be2286a6d4c7e134fcb0832f22bc645039a1 |
||
|---|---|---|
| .. | ||
| contrib | ||
| core | ||
| cuda_rtc | ||
| db | ||
| distributed | ||
| experiments | ||
| ideep | ||
| image | ||
| mobile | ||
| mpi | ||
| observers | ||
| onnx | ||
| operators | ||
| opt | ||
| perfkernels | ||
| predictor | ||
| proto | ||
| python | ||
| quantization | ||
| queue | ||
| serialize | ||
| sgd | ||
| share | ||
| test | ||
| transforms | ||
| utils | ||
| video | ||
| __init__.py | ||
| .clang-format | ||
| c2_aten_srcs.bzl | ||
| CMakeLists.txt | ||
| README.md | ||
| release-notes.md | ||
| requirements.txt | ||
| VERSION_NUMBER | ||
Caffe2
Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind.
Questions and Feedback
Please use Github issues (https://github.com/pytorch/pytorch/issues) to ask questions, report bugs, and request new features.