mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
35 lines
1.2 KiB
Python
35 lines
1.2 KiB
Python
## @package tools
|
|
# Module caffe2.python.helpers.tools
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
def image_input(
|
|
model, blob_in, blob_out, order="NCHW", use_gpu_transform=False, **kwargs
|
|
):
|
|
assert 'is_test' in kwargs, "Argument 'is_test' is required"
|
|
if order == "NCHW":
|
|
if (use_gpu_transform):
|
|
kwargs['use_gpu_transform'] = 1 if use_gpu_transform else 0
|
|
# GPU transform will handle NHWC -> NCHW
|
|
outputs = model.net.ImageInput(blob_in, blob_out, **kwargs)
|
|
pass
|
|
else:
|
|
outputs = model.net.ImageInput(
|
|
blob_in, [blob_out[0] + '_nhwc'] + blob_out[1:], **kwargs
|
|
)
|
|
outputs_list = list(outputs)
|
|
outputs_list[0] = model.net.NHWC2NCHW(outputs_list[0], blob_out[0])
|
|
outputs = tuple(outputs_list)
|
|
else:
|
|
outputs = model.net.ImageInput(blob_in, blob_out, **kwargs)
|
|
return outputs
|
|
|
|
|
|
def video_input(model, blob_in, blob_out, **kwargs):
|
|
# size of outputs can vary depending on kwargs
|
|
outputs = model.net.VideoInput(blob_in, blob_out, **kwargs)
|
|
return outputs
|