## @package tools # Module caffe2.python.helpers.tools from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals def image_input( model, blob_in, blob_out, order="NCHW", use_gpu_transform=False, **kwargs ): assert 'is_test' in kwargs, "Argument 'is_test' is required" if order == "NCHW": if (use_gpu_transform): kwargs['use_gpu_transform'] = 1 if use_gpu_transform else 0 # GPU transform will handle NHWC -> NCHW outputs = model.net.ImageInput(blob_in, blob_out, **kwargs) pass else: outputs = model.net.ImageInput( blob_in, [blob_out[0] + '_nhwc'] + blob_out[1:], **kwargs ) outputs_list = list(outputs) outputs_list[0] = model.net.NHWC2NCHW(outputs_list[0], blob_out[0]) outputs = tuple(outputs_list) else: outputs = model.net.ImageInput(blob_in, blob_out, **kwargs) return outputs def video_input(model, blob_in, blob_out, **kwargs): # size of outputs can vary depending on kwargs outputs = model.net.VideoInput(blob_in, blob_out, **kwargs) return outputs