mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
115 lines
4.5 KiB
Python
115 lines
4.5 KiB
Python
## @package sparse_feature_hash
|
|
# Module caffe2.python.layers.sparse_feature_hash
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import schema, core
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
IdList,
|
|
IdScoreList,
|
|
)
|
|
from caffe2.python.layers.tags import (
|
|
Tags
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
|
|
class SparseFeatureHash(ModelLayer):
|
|
|
|
def __init__(self, model, input_record, seed=0, modulo=None,
|
|
use_hashing=True, use_divide_mod=False, divisor=None, name='sparse_feature_hash', **kwargs):
|
|
super(SparseFeatureHash, self).__init__(model, name, input_record, **kwargs)
|
|
|
|
assert use_hashing + use_divide_mod < 2, "use_hashing and use_divide_mod cannot be set true at the same time."
|
|
|
|
if use_divide_mod:
|
|
assert divisor >= 1, 'Unexpected divisor: {}'.format(divisor)
|
|
|
|
self.divisor = self.create_param(param_name='divisor',
|
|
shape=[1],
|
|
initializer=('GivenTensorInt64Fill', {'values': np.array([divisor])}),
|
|
optimizer=model.NoOptim)
|
|
|
|
self.seed = seed
|
|
self.use_hashing = use_hashing
|
|
self.use_divide_mod = use_divide_mod
|
|
|
|
if schema.equal_schemas(input_record, IdList):
|
|
self.modulo = modulo or self.extract_hash_size(input_record.items.metadata)
|
|
metadata = schema.Metadata(
|
|
categorical_limit=self.modulo,
|
|
feature_specs=input_record.items.metadata.feature_specs if input_record.items.metadata else None,
|
|
expected_value=input_record.items.metadata.expected_value if input_record.items.metadata else None
|
|
)
|
|
with core.NameScope(name):
|
|
self.output_schema = schema.NewRecord(model.net, IdList)
|
|
self.output_schema.items.set_metadata(metadata)
|
|
|
|
elif schema.equal_schemas(input_record, IdScoreList):
|
|
self.modulo = modulo or self.extract_hash_size(input_record.keys.metadata)
|
|
metadata = schema.Metadata(
|
|
categorical_limit=self.modulo,
|
|
feature_specs=input_record.keys.metadata.feature_specs,
|
|
expected_value=input_record.keys.metadata.expected_value
|
|
)
|
|
with core.NameScope(name):
|
|
self.output_schema = schema.NewRecord(model.net, IdScoreList)
|
|
self.output_schema.keys.set_metadata(metadata)
|
|
|
|
else:
|
|
assert False, "Input type must be one of (IdList, IdScoreList)"
|
|
|
|
assert self.modulo >= 1, 'Unexpected modulo: {}'.format(self.modulo)
|
|
if input_record.lengths.metadata:
|
|
self.output_schema.lengths.set_metadata(input_record.lengths.metadata)
|
|
|
|
# operators in this layer do not have CUDA implementation yet.
|
|
# In addition, since the sparse feature keys that we are hashing are
|
|
# typically on CPU originally, it makes sense to have this layer on CPU.
|
|
self.tags.update([Tags.CPU_ONLY])
|
|
|
|
def extract_hash_size(self, metadata):
|
|
if metadata.feature_specs and metadata.feature_specs.desired_hash_size:
|
|
return metadata.feature_specs.desired_hash_size
|
|
elif metadata.categorical_limit is not None:
|
|
return metadata.categorical_limit
|
|
else:
|
|
assert False, "desired_hash_size or categorical_limit must be set"
|
|
|
|
def add_ops(self, net):
|
|
net.Copy(
|
|
self.input_record.lengths(),
|
|
self.output_schema.lengths()
|
|
)
|
|
if schema.equal_schemas(self.output_schema, IdList):
|
|
input_blob = self.input_record.items()
|
|
output_blob = self.output_schema.items()
|
|
elif schema.equal_schemas(self.output_schema, IdScoreList):
|
|
input_blob = self.input_record.keys()
|
|
output_blob = self.output_schema.keys()
|
|
net.Copy(
|
|
self.input_record.values(),
|
|
self.output_schema.values()
|
|
)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
if self.use_hashing:
|
|
net.IndexHash(
|
|
input_blob, output_blob, seed=self.seed, modulo=self.modulo
|
|
)
|
|
else:
|
|
if self.use_divide_mod:
|
|
quotient = net.Div([input_blob, self.divisor], [net.NextScopedBlob('quotient')])
|
|
net.Mod(
|
|
quotient, output_blob, divisor=self.modulo, sign_follow_divisor=True
|
|
)
|
|
else:
|
|
net.Mod(
|
|
input_blob, output_blob, divisor=self.modulo, sign_follow_divisor=True
|
|
)
|