## @package sparse_feature_hash # Module caffe2.python.layers.sparse_feature_hash from caffe2.python import schema, core from caffe2.python.layers.layers import ( ModelLayer, IdList, IdScoreList, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np class SparseFeatureHash(ModelLayer): def __init__(self, model, input_record, seed=0, modulo=None, use_hashing=True, use_divide_mod=False, divisor=None, name='sparse_feature_hash', **kwargs): super(SparseFeatureHash, self).__init__(model, name, input_record, **kwargs) assert use_hashing + use_divide_mod < 2, "use_hashing and use_divide_mod cannot be set true at the same time." if use_divide_mod: assert divisor >= 1, 'Unexpected divisor: {}'.format(divisor) self.divisor = self.create_param(param_name='divisor', shape=[1], initializer=('GivenTensorInt64Fill', {'values': np.array([divisor])}), optimizer=model.NoOptim) self.seed = seed self.use_hashing = use_hashing self.use_divide_mod = use_divide_mod if schema.equal_schemas(input_record, IdList): self.modulo = modulo or self.extract_hash_size(input_record.items.metadata) metadata = schema.Metadata( categorical_limit=self.modulo, feature_specs=input_record.items.metadata.feature_specs if input_record.items.metadata else None, expected_value=input_record.items.metadata.expected_value if input_record.items.metadata else None ) with core.NameScope(name): self.output_schema = schema.NewRecord(model.net, IdList) self.output_schema.items.set_metadata(metadata) elif schema.equal_schemas(input_record, IdScoreList): self.modulo = modulo or self.extract_hash_size(input_record.keys.metadata) metadata = schema.Metadata( categorical_limit=self.modulo, feature_specs=input_record.keys.metadata.feature_specs, expected_value=input_record.keys.metadata.expected_value ) with core.NameScope(name): self.output_schema = schema.NewRecord(model.net, IdScoreList) self.output_schema.keys.set_metadata(metadata) else: assert False, "Input type must be one of (IdList, IdScoreList)" assert self.modulo >= 1, 'Unexpected modulo: {}'.format(self.modulo) if input_record.lengths.metadata: self.output_schema.lengths.set_metadata(input_record.lengths.metadata) # operators in this layer do not have CUDA implementation yet. # In addition, since the sparse feature keys that we are hashing are # typically on CPU originally, it makes sense to have this layer on CPU. self.tags.update([Tags.CPU_ONLY]) def extract_hash_size(self, metadata): if metadata.feature_specs and metadata.feature_specs.desired_hash_size: return metadata.feature_specs.desired_hash_size elif metadata.categorical_limit is not None: return metadata.categorical_limit else: assert False, "desired_hash_size or categorical_limit must be set" def add_ops(self, net): net.Copy( self.input_record.lengths(), self.output_schema.lengths() ) if schema.equal_schemas(self.output_schema, IdList): input_blob = self.input_record.items() output_blob = self.output_schema.items() elif schema.equal_schemas(self.output_schema, IdScoreList): input_blob = self.input_record.keys() output_blob = self.output_schema.keys() net.Copy( self.input_record.values(), self.output_schema.values() ) else: raise NotImplementedError() if self.use_hashing: net.IndexHash( input_blob, output_blob, seed=self.seed, modulo=self.modulo ) else: if self.use_divide_mod: quotient = net.Div([input_blob, self.divisor], [net.NextScopedBlob('quotient')]) net.Mod( quotient, output_blob, divisor=self.modulo, sign_follow_divisor=True ) else: net.Mod( input_blob, output_blob, divisor=self.modulo, sign_follow_divisor=True )