mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
120 lines
3.4 KiB
Python
120 lines
3.4 KiB
Python
# @package batch_huber_loss
|
|
# Module caffe2.python.layers.batch_huber_loss
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
)
|
|
from caffe2.python.layers.tags import (
|
|
Tags
|
|
)
|
|
import numpy as np
|
|
|
|
|
|
class BatchHuberLoss(ModelLayer):
|
|
|
|
def __init__(self, model, input_record, name='batch_huber_loss', delta=1.0, **kwargs):
|
|
super(BatchHuberLoss, self).__init__(model, name, input_record, **kwargs)
|
|
|
|
assert delta > 0
|
|
|
|
self._delta = delta
|
|
|
|
assert schema.is_schema_subset(
|
|
schema.Struct(
|
|
('label', schema.Scalar()),
|
|
('prediction', schema.Scalar())
|
|
),
|
|
input_record
|
|
)
|
|
self.tags.update([Tags.EXCLUDE_FROM_PREDICTION])
|
|
|
|
self.output_schema = schema.Scalar(
|
|
np.float32,
|
|
self.get_next_blob_reference('output'))
|
|
|
|
def add_ops(self, net):
|
|
prediction = net.Squeeze(
|
|
self.input_record.prediction(),
|
|
net.NextScopedBlob('squeezed_prediction'),
|
|
dims=[1]
|
|
)
|
|
|
|
label = self.input_record.label.field_blobs()
|
|
if self.input_record.label.field_type().base != (
|
|
self.input_record.prediction.field_type().base):
|
|
label = net.Cast(
|
|
label,
|
|
net.NextScopedBlob('cast_label'),
|
|
to=schema.data_type_for_dtype(
|
|
self.input_record.prediction.field_type()
|
|
)
|
|
)
|
|
|
|
const_delta = net.ConstantFill(
|
|
label,
|
|
net.NextScopedBlob("delta"),
|
|
value=self._delta,
|
|
dtype=core.DataType.FLOAT,
|
|
)
|
|
|
|
label = net.StopGradient(
|
|
label,
|
|
net.NextScopedBlob('stopped_label')
|
|
)
|
|
|
|
const_delta = net.StopGradient(
|
|
const_delta,
|
|
net.NextScopedBlob('stopped_delta')
|
|
)
|
|
|
|
# abs_error = np.abs(true - pred)
|
|
abs_error = net.L1Distance(
|
|
[label, prediction], net.NextScopedBlob("abs_error")
|
|
)
|
|
|
|
# quadratic = 0.5*min(abs_error, delta)^2, linear = delta*max(abs_error-delta, 0)
|
|
min_error = net.Min(
|
|
[abs_error, const_delta], net.NextScopedBlob("min_error_delta")
|
|
)
|
|
|
|
quadratic_term = net.Scale(
|
|
net.Sqr(min_error), scale=float(0.5)
|
|
)
|
|
|
|
linear_term = net.Mul(
|
|
[
|
|
net.Sub([abs_error, min_error]),
|
|
const_delta,
|
|
],
|
|
net.NextScopedBlob("huber_linear_term")
|
|
)
|
|
|
|
# huber = 0.5 * min(abs_error, delta)^2 + delta * max(abs_error-delta, 0)
|
|
huber_dist = net.Add(
|
|
[quadratic_term, linear_term], net.NextScopedBlob("huber_dist")
|
|
)
|
|
|
|
if 'weight' in self.input_record.fields:
|
|
weight_blob = self.input_record.weight()
|
|
if self.input_record.weight.field_type().base != np.float32:
|
|
weight_blob = net.Cast(
|
|
weight_blob,
|
|
weight_blob + '_float32',
|
|
to=core.DataType.FLOAT
|
|
)
|
|
weight_blob = net.StopGradient(
|
|
[weight_blob],
|
|
[net.NextScopedBlob('weight_stop_gradient')],
|
|
)
|
|
huber_dist = net.Mul(
|
|
[huber_dist, weight_blob],
|
|
net.NextScopedBlob("weighted_huber_distance"),
|
|
)
|
|
|
|
net.AveragedLoss(huber_dist, self.output_schema.field_blobs())
|