# @package batch_huber_loss # Module caffe2.python.layers.batch_huber_loss from caffe2.python import core, schema from caffe2.python.layers.layers import ( ModelLayer, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np class BatchHuberLoss(ModelLayer): def __init__(self, model, input_record, name='batch_huber_loss', delta=1.0, **kwargs): super(BatchHuberLoss, self).__init__(model, name, input_record, **kwargs) assert delta > 0 self._delta = delta assert schema.is_schema_subset( schema.Struct( ('label', schema.Scalar()), ('prediction', schema.Scalar()) ), input_record ) self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('output')) def add_ops(self, net): prediction = net.Squeeze( self.input_record.prediction(), net.NextScopedBlob('squeezed_prediction'), dims=[1] ) label = self.input_record.label.field_blobs() if self.input_record.label.field_type().base != ( self.input_record.prediction.field_type().base): label = net.Cast( label, net.NextScopedBlob('cast_label'), to=schema.data_type_for_dtype( self.input_record.prediction.field_type() ) ) const_delta = net.ConstantFill( label, net.NextScopedBlob("delta"), value=self._delta, dtype=core.DataType.FLOAT, ) label = net.StopGradient( label, net.NextScopedBlob('stopped_label') ) const_delta = net.StopGradient( const_delta, net.NextScopedBlob('stopped_delta') ) # abs_error = np.abs(true - pred) abs_error = net.L1Distance( [label, prediction], net.NextScopedBlob("abs_error") ) # quadratic = 0.5*min(abs_error, delta)^2, linear = delta*max(abs_error-delta, 0) min_error = net.Min( [abs_error, const_delta], net.NextScopedBlob("min_error_delta") ) quadratic_term = net.Scale( net.Sqr(min_error), scale=float(0.5) ) linear_term = net.Mul( [ net.Sub([abs_error, min_error]), const_delta, ], net.NextScopedBlob("huber_linear_term") ) # huber = 0.5 * min(abs_error, delta)^2 + delta * max(abs_error-delta, 0) huber_dist = net.Add( [quadratic_term, linear_term], net.NextScopedBlob("huber_dist") ) if 'weight' in self.input_record.fields: weight_blob = self.input_record.weight() if self.input_record.weight.field_type().base != np.float32: weight_blob = net.Cast( weight_blob, weight_blob + '_float32', to=core.DataType.FLOAT ) weight_blob = net.StopGradient( [weight_blob], [net.NextScopedBlob('weight_stop_gradient')], ) huber_dist = net.Mul( [huber_dist, weight_blob], net.NextScopedBlob("weighted_huber_distance"), ) net.AveragedLoss(huber_dist, self.output_schema.field_blobs())