mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51342 There is a subtle bug with the MemoryPlanner with regard to view ops with out variant. ``` def forward(self, a: Tensor, shape: List[int]): b = a.reshape(shape) return b + b ``` In this case, if we replace reshape with the out variant, b would be managed by the MemoryPlanner and the storage of its output would have been set to nullptr right after inference by the MemoryPlanner if opts.cleanup_activations is true. Because b is a view of a, the storage of a is also set to nullptr, and this violates the API which promises that a is const. To fix this bug, I changed the MemoryPlanner so that it puts b in the unmanaged part. Test Plan: Add unit test to enforce the constness of inputs ``` buck test //caffe2/benchmarks/static_runtime:static_runtime_cpptest ``` Reviewed By: ajyu Differential Revision: D26144203 fbshipit-source-id: 2dbacccf7685d0fe0f0b1195166e0510b2069fe3
872 lines
26 KiB
C++
872 lines
26 KiB
C++
#include <torch/csrc/jit/runtime/static/impl.h>
|
|
|
|
#include <ATen/core/LegacyTypeDispatch.h>
|
|
#include <ATen/core/interned_strings.h>
|
|
#include <c10/core/CPUAllocator.h>
|
|
#include <caffe2/core/scope_guard.h>
|
|
#include <caffe2/core/timer.h>
|
|
#include <torch/csrc/jit/passes/canonicalize.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/freeze_module.h>
|
|
#include <torch/csrc/jit/passes/remove_mutation.h>
|
|
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
|
|
#include <torch/csrc/jit/runtime/static/ops.h>
|
|
#include <torch/csrc/jit/runtime/static/passes.h>
|
|
#include <torch/csrc/jit/runtime/vararg_functions.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
void PrepareGraphForStaticRuntime(std::shared_ptr<torch::jit::Graph> graph) {
|
|
Inline(*graph);
|
|
ConstantPropagation(graph);
|
|
Canonicalize(graph);
|
|
ConstantPropagation(graph);
|
|
RemoveTensorMutation(graph);
|
|
ConstantPropagation(graph);
|
|
EliminateDeadCode(graph);
|
|
}
|
|
|
|
namespace {
|
|
void OptimizeGraph(std::shared_ptr<torch::jit::Graph>& graph) {
|
|
PrepareGraphForStaticRuntime(graph);
|
|
FuseInferenceOpsForSparseNN(graph);
|
|
ConstantPropagation(graph);
|
|
}
|
|
|
|
void CheckGraphEligibility(const std::shared_ptr<torch::jit::Graph>& graph) {
|
|
for (auto n : graph->nodes()) {
|
|
if (n->kind() == c10::Symbol::fromQualString("prim::GetAttr")) {
|
|
throw std::runtime_error("Cannot accelerate unfrozen graphs");
|
|
}
|
|
}
|
|
// check output types
|
|
// Static Runtime supports output types include None, Tensor and List/Tuple
|
|
// of Tensor
|
|
for (Value* output : graph->outputs()) {
|
|
VLOG(1) << "output: %" << output->debugName()
|
|
<< " has type: " << output->type()->repr_str();
|
|
auto kind = output->node()->kind();
|
|
if (kind == prim::TupleConstruct || kind == prim::ListConstruct) {
|
|
for (Value* input : output->node()->inputs()) {
|
|
const auto& type = input->type();
|
|
TORCH_CHECK(
|
|
type->cast<TensorType>() != nullptr,
|
|
"Static Runtime expects output type as List or Tuple of Tensor, but got List or Tuple of ",
|
|
type->repr_str());
|
|
}
|
|
} else {
|
|
const auto& type = output->type();
|
|
TORCH_CHECK(
|
|
type->cast<TensorType>() != nullptr ||
|
|
type->cast<NoneType>() != nullptr,
|
|
"Static Runtime expects output type as None or Tensor, but got ",
|
|
type->repr_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// remove unused input 0 from graph
|
|
void RemoveSelfFromGraphInput(std::shared_ptr<torch::jit::Graph>& graph) {
|
|
if (graph->inputs().at(0)->type()->is_module()) {
|
|
TORCH_CHECK(!graph->inputs().at(0)->hasUses());
|
|
graph->eraseInput(0);
|
|
}
|
|
}
|
|
|
|
// remove "self" from function schema
|
|
std::unique_ptr<c10::FunctionSchema> RemoveSelfFromSchema(
|
|
const c10::FunctionSchema& s) {
|
|
TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self");
|
|
std::vector<Argument> args({s.arguments().begin() + 1, s.arguments().end()});
|
|
return std::make_unique<c10::FunctionSchema>(s.cloneWithArguments(args));
|
|
}
|
|
|
|
// Returns two useful constructs:
|
|
// first: map each value to all values that are alive
|
|
// at the same time.
|
|
// second: set of all inputs/outputs/constants (always alive)
|
|
std::pair<std::unordered_map<Value*, std::set<Value*>>, std::set<Value*>>
|
|
LivenessMap(const std::shared_ptr<torch::jit::Graph>& graph) {
|
|
std::unordered_map<Value*, std::set<Value*>> liveness_map;
|
|
std::set<Value*> always_alive;
|
|
|
|
std::vector<Value*> frontier;
|
|
// map live values to their deps, invariant: set.size() > 0
|
|
std::unordered_map<Value*, std::set<Node*>> live_values;
|
|
for (const auto& input : graph->inputs()) {
|
|
frontier.emplace_back(input);
|
|
always_alive.insert(input);
|
|
}
|
|
for (const auto& output : graph->outputs()) {
|
|
always_alive.insert(output);
|
|
}
|
|
|
|
auto add_live_value = [&](Value* v) {
|
|
liveness_map[v] = {};
|
|
|
|
for (const auto& live_v : live_values) {
|
|
liveness_map.at(v).insert(live_v.first);
|
|
liveness_map.at(live_v.first).insert(v);
|
|
}
|
|
|
|
// only add values to the live set if they
|
|
// have deps, otherwise they die immediately
|
|
if (v->uses().size()) {
|
|
live_values[v] = {};
|
|
}
|
|
|
|
for (const auto& u : v->uses()) {
|
|
const auto& node = u.user;
|
|
// track deps of this value
|
|
live_values.at(v).insert(node);
|
|
}
|
|
};
|
|
|
|
auto traverse_node = [&](Node* node, std::vector<Value*>& dead) {
|
|
for (const auto& input : node->inputs()) {
|
|
// ignore constant values
|
|
if (input->node()->kind() == prim::Constant) {
|
|
always_alive.insert(input);
|
|
continue;
|
|
}
|
|
if (live_values.count(input)) {
|
|
live_values.at(input).erase(node);
|
|
if (!live_values.at(input).size()) {
|
|
dead.emplace_back(input);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
for (const auto& node : graph->nodes()) {
|
|
for (const auto& v : node->outputs()) {
|
|
add_live_value(v);
|
|
}
|
|
|
|
std::vector<Value*> dead;
|
|
traverse_node(node, dead);
|
|
for (const auto& dead_value : dead) {
|
|
live_values.erase(dead_value);
|
|
}
|
|
}
|
|
|
|
for (const auto& v : live_values) {
|
|
TORCH_CHECK(always_alive.count(v.first));
|
|
}
|
|
|
|
for (const auto& node : graph->nodes()) {
|
|
for (const auto& input : node->inputs()) {
|
|
for (const auto& output : node->outputs()) {
|
|
if (liveness_map.count(input) && liveness_map.count(output)) {
|
|
liveness_map.at(input).insert(output);
|
|
liveness_map.at(output).insert(input);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_pair(liveness_map, always_alive);
|
|
}
|
|
|
|
std::unordered_set<Value*> GetOptimizableValues(
|
|
const std::shared_ptr<torch::jit::Graph>& graph) {
|
|
std::unordered_set<Value*> can_reuse;
|
|
// values used by unsupported ops (as either inputs or outputs)
|
|
// these need to be removed from "can_reuse" after analyzing all nodes
|
|
std::unordered_set<Value*> cannot_reuse;
|
|
for (const auto& n : graph->nodes()) {
|
|
for (const auto& v : n->inputs()) {
|
|
if (canRunOutOfPlace(n) && canReuseInputsOutputs(n) &&
|
|
canReuseInputs(n)) {
|
|
can_reuse.insert(v);
|
|
} else {
|
|
cannot_reuse.insert(v);
|
|
}
|
|
}
|
|
for (const auto& v : n->outputs()) {
|
|
if (canRunOutOfPlace(n) && canReuseInputsOutputs(n) &&
|
|
canReuseOutputs(n)) {
|
|
can_reuse.insert(v);
|
|
} else {
|
|
cannot_reuse.insert(v);
|
|
}
|
|
}
|
|
}
|
|
for (auto v : cannot_reuse) {
|
|
can_reuse.erase(v);
|
|
}
|
|
return can_reuse;
|
|
}
|
|
|
|
size_t AssignRegisters(
|
|
const std::shared_ptr<torch::jit::Graph>& graph,
|
|
std::unordered_map<Value*, size_t>& value_to_reg,
|
|
std::vector<Value*>& values,
|
|
std::vector<size_t>& input_regs,
|
|
std::vector<size_t>& output_regs,
|
|
bool optimize_memory) {
|
|
auto lm = LivenessMap(graph);
|
|
auto optimizable_values = GetOptimizableValues(graph);
|
|
|
|
size_t num_regs = 0;
|
|
size_t reused_regs = 0;
|
|
std::unordered_map<size_t, std::set<Value*>> reg_to_val;
|
|
auto getReg = [&](Value* v) -> size_t {
|
|
if (!optimize_memory) {
|
|
return num_regs++;
|
|
}
|
|
TORCH_CHECK(!value_to_reg.count(v));
|
|
auto iter = lm.first.find(v);
|
|
if (iter == lm.first.end()) {
|
|
return num_regs++;
|
|
}
|
|
if (!optimizable_values.count(v)) {
|
|
return num_regs++;
|
|
}
|
|
if (lm.second.count(v)) {
|
|
return num_regs++;
|
|
}
|
|
const auto& live_values = iter->second;
|
|
// iterate through all the allocated registers
|
|
// and check for potential re-use, greedily
|
|
for (const auto& v2r : value_to_reg) {
|
|
auto candidate_v = v2r.first;
|
|
|
|
if (!optimizable_values.count(candidate_v)) {
|
|
continue;
|
|
}
|
|
if (lm.second.count(candidate_v)) {
|
|
continue;
|
|
}
|
|
|
|
// Only re-use float* tensors
|
|
auto t = candidate_v->type()->cast<TensorType>();
|
|
if (!t) {
|
|
continue;
|
|
}
|
|
// TODO audit this assumption (passes tests, but is scary)
|
|
if (t->scalarType() && *(t->scalarType()) != at::kFloat) {
|
|
continue;
|
|
}
|
|
// TODO
|
|
// if (*(t->scalarType()) != at::kFloat) {
|
|
// continue;
|
|
//}
|
|
if (!live_values.count(candidate_v)) {
|
|
bool already_used = false;
|
|
for (auto use : reg_to_val.at(v2r.second)) {
|
|
if (live_values.count(use)) {
|
|
already_used = true;
|
|
}
|
|
}
|
|
if (already_used) {
|
|
continue;
|
|
}
|
|
reused_regs++;
|
|
return v2r.second;
|
|
}
|
|
}
|
|
return num_regs++;
|
|
};
|
|
|
|
// assign register to Value*
|
|
for (Value* input : graph->inputs()) {
|
|
TORCH_CHECK(value_to_reg.count(input) == 0);
|
|
auto reg = getReg(input);
|
|
value_to_reg[input] = reg;
|
|
reg_to_val[reg].insert(input);
|
|
input_regs.push_back(reg);
|
|
}
|
|
for (Node* node : graph->nodes()) {
|
|
for (Value* input : node->inputs()) {
|
|
TORCH_CHECK(value_to_reg.count(input) > 0);
|
|
}
|
|
for (Value* output : node->outputs()) {
|
|
TORCH_CHECK(
|
|
value_to_reg.count(output) == 0, "the graph needs to be in SSA form");
|
|
auto reg = getReg(output);
|
|
value_to_reg[output] = reg;
|
|
reg_to_val[reg].insert(output);
|
|
}
|
|
}
|
|
TORCH_CHECK(graph->outputs().size() > 0);
|
|
for (Value* output : graph->outputs()) {
|
|
TORCH_CHECK(value_to_reg.count(output) > 0);
|
|
output_regs.push_back(value_to_reg[output]);
|
|
}
|
|
|
|
values.resize(value_to_reg.size());
|
|
for (const auto& p : value_to_reg) {
|
|
values[p.second] = p.first;
|
|
}
|
|
return reused_regs;
|
|
}
|
|
|
|
// Internal values are discarded after run if
|
|
// opts_.cleanup_activations is true.
|
|
void DeduceInternalValues(
|
|
const std::shared_ptr<torch::jit::Graph>& graph,
|
|
const std::unordered_map<Value*, size_t>& value_to_reg,
|
|
std::vector<size_t>& internals) {
|
|
std::unordered_set<Value*> outputs{
|
|
graph->outputs().begin(), graph->outputs().end()};
|
|
for (Node* node : graph->nodes()) {
|
|
if (node->kind() != prim::Constant) {
|
|
for (Value* output : node->outputs()) {
|
|
if (outputs.count(output) == 0) {
|
|
internals.push_back(value_to_reg.at(output));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void InferenceModule::init() {
|
|
OptimizeGraph(graph);
|
|
CheckGraphEligibility(graph);
|
|
RemoveSelfFromGraphInput(graph);
|
|
reused_regs = AssignRegisters(
|
|
graph,
|
|
value_to_reg,
|
|
values,
|
|
input_regs,
|
|
output_regs,
|
|
opts.optimize_memory);
|
|
DeduceInternalValues(graph, value_to_reg, internals);
|
|
}
|
|
|
|
InferenceModule::InferenceModule(
|
|
const torch::jit::Module& m,
|
|
InferenceModuleOptions opts_)
|
|
: module(m.copy()), graph(nullptr), schema(nullptr), opts(opts_) {
|
|
module.eval();
|
|
module = freeze_module(module);
|
|
|
|
Method method = module.get_method("forward");
|
|
graph = method.graph();
|
|
|
|
const c10::FunctionSchema& s = method.function().getSchema();
|
|
schema = RemoveSelfFromSchema(s);
|
|
|
|
init();
|
|
}
|
|
|
|
InferenceModule::InferenceModule(
|
|
std::shared_ptr<torch::jit::Graph> g,
|
|
InferenceModuleOptions opts_)
|
|
: module(), graph(std::move(g)), schema(nullptr), opts(opts_) {
|
|
init();
|
|
}
|
|
|
|
StaticRuntime::StaticRuntime(
|
|
const torch::jit::Module& m,
|
|
const StaticRuntimeOptions& opts)
|
|
: StaticRuntime(PrepareForStaticRuntime(m), opts) {}
|
|
|
|
StaticRuntime::StaticRuntime(
|
|
std::shared_ptr<InferenceModule> m,
|
|
const StaticRuntimeOptions& opts)
|
|
: module_(m), opts_(opts) {
|
|
TORCH_CHECK(
|
|
module_ != nullptr,
|
|
"std::shared_ptr<InferenceModule> module_ cannot be nullptr")
|
|
|
|
Graph* graph = module_->graph.get();
|
|
std::unordered_map<Value*, IValue*> val_to_ival;
|
|
|
|
// NB: create an unchanging std::vector<IValue> we can reference
|
|
for (auto input : graph->inputs()) {
|
|
inputs_.emplace_back();
|
|
}
|
|
for (auto i = 0; i < graph->inputs().size(); ++i) {
|
|
Value* input = graph->inputs()[i];
|
|
val_to_ival[input] = &(inputs_[i]);
|
|
}
|
|
|
|
// fill workspace_ with constants and create ProcessedNodes
|
|
// NB: before optimizing the order of execution, ensure that the
|
|
// memory optimization pass (LivenessMap + AssignRegisters) is
|
|
// aware of the new order!
|
|
|
|
// Fill constants first, so we have a std::vector<IValue> we can reference
|
|
// later
|
|
for (Node* node : graph->nodes()) {
|
|
if (node->kind() != prim::Constant) {
|
|
continue;
|
|
}
|
|
auto* v = node->output();
|
|
TORCH_CHECK(v->type()->kind() != FunctionType::Kind);
|
|
constants_.emplace_back(toIValue(v).value());
|
|
}
|
|
{
|
|
int i = 0;
|
|
for (Node* node : graph->nodes()) {
|
|
if (node->kind() != prim::Constant) {
|
|
continue;
|
|
}
|
|
auto* v = node->output();
|
|
val_to_ival[v] = &(constants_[i++]);
|
|
}
|
|
}
|
|
for (Node* node : graph->nodes()) {
|
|
if (node->kind() == prim::Constant) {
|
|
continue;
|
|
}
|
|
std::vector<const IValue*> inputs;
|
|
for (Value* input : node->inputs()) {
|
|
inputs.emplace_back(val_to_ival.at(input));
|
|
}
|
|
nodes_.emplace_back(
|
|
ProcessedNode(node, std::move(inputs), opts.enable_out_variant));
|
|
for (auto i = 0; i < node->outputs().size(); ++i) {
|
|
val_to_ival[node->outputs()[i]] = &nodes_.back().Output(i);
|
|
}
|
|
}
|
|
for (auto output : graph->outputs()) {
|
|
outputs_.emplace_back(val_to_ival.at(output));
|
|
}
|
|
}
|
|
|
|
size_t StaticRuntime::num_outputs() const {
|
|
return module_->output_regs.size();
|
|
}
|
|
|
|
std::vector<at::Tensor> StaticRuntime::run(
|
|
const std::vector<at::Tensor>& inps) {
|
|
std::vector<c10::IValue> stack;
|
|
stack.resize(inps.size());
|
|
for (size_t i = 0; i < inps.size(); i++) {
|
|
stack[i] = inps[i];
|
|
}
|
|
|
|
c10::IValue v = run(stack, std::unordered_map<std::string, c10::IValue>());
|
|
|
|
std::vector<at::Tensor> out;
|
|
|
|
if (v.isTuple()) {
|
|
auto t = v.toTuple();
|
|
for (const auto& el : t->elements()) {
|
|
out.emplace_back(el.toTensor());
|
|
}
|
|
} else {
|
|
out.emplace_back(v.toTensor());
|
|
}
|
|
return out;
|
|
}
|
|
|
|
c10::IValue StaticRuntime::run(
|
|
const std::vector<c10::IValue>& args,
|
|
const std::unordered_map<std::string, c10::IValue>& kwargs) {
|
|
// We assume inference workloads, so we do not need
|
|
// autograd. Enabling this is a significant win on dispatcher
|
|
// overhead because it saves a round of dispatch for at least some
|
|
// functions, such as resize_ and resize_as_.
|
|
at::AutoNonVariableTypeMode non_var_type_mode(true);
|
|
|
|
if (planner_) {
|
|
planner_->allocate();
|
|
}
|
|
|
|
if (!kwargs.empty()) {
|
|
// This is not ideal
|
|
TORCH_CHECK(
|
|
module_->schema != nullptr,
|
|
"Schema is not available. Consider creating the Static Runtime "
|
|
"with StaticRuntime(const torch::jit::Module& m) instead.");
|
|
std::vector<c10::IValue> s = args;
|
|
module_->schema->checkAndNormalizeInputs(s, kwargs);
|
|
for (size_t i = 0; i < s.size(); i++) {
|
|
Input(i) = s[i];
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < args.size(); i++) {
|
|
Input(i) = args[i];
|
|
}
|
|
}
|
|
|
|
// NB: before optimizing the order of execution, ensure that the
|
|
// memory optimization pass (LivenessMap + AssignRegisters) is
|
|
// aware of the new order!
|
|
for (auto& n : nodes_) {
|
|
n.run();
|
|
}
|
|
|
|
if (opts_.cleanup_activations) {
|
|
if (!planner_) {
|
|
std::unordered_map<Value*, std::vector<Value*>> shared;
|
|
planner_ = std::make_unique<MemoryPlanner>(this, shared);
|
|
}
|
|
planner_->deallocate();
|
|
}
|
|
|
|
// no need to keep references of outputs in static runtime anymore
|
|
if (num_outputs() > 1) {
|
|
std::vector<c10::IValue> outputs;
|
|
outputs.reserve(num_outputs());
|
|
for (auto i = 0; i < num_outputs(); ++i) {
|
|
outputs.emplace_back(Output(i));
|
|
}
|
|
return c10::ivalue::Tuple::create(outputs);
|
|
}
|
|
return Output(0);
|
|
}
|
|
|
|
void StaticRuntime::benchmark(
|
|
const std::vector<c10::IValue>& args,
|
|
const std::unordered_map<std::string, c10::IValue>& kwargs,
|
|
const int warmup_runs,
|
|
const int main_runs) {
|
|
float time_per_iter = benchmark_model(args, kwargs, warmup_runs, main_runs);
|
|
std::cout << "Static runtime ms per iter: " << time_per_iter
|
|
<< ". Iters per second: " << 1000.0 / time_per_iter << std::endl;
|
|
|
|
IndividualMetrics results =
|
|
benchmark_individual_ops(args, kwargs, warmup_runs, main_runs);
|
|
std::cout << "Setting up took " << results.setup_time << " ms" << std::endl;
|
|
|
|
for (size_t i = 0; i < nodes_.size(); i++) {
|
|
const Node* node = nodes_[i].get_node();
|
|
std::cout << "Node #" << i << ": " << results.time_per_node[i]
|
|
<< " ms/iter, ";
|
|
node->print(std::cout, 0, nullptr, false);
|
|
}
|
|
|
|
std::vector<std::pair<std::string, double>> time_per_node_type_vec{
|
|
results.time_per_node_type.begin(), results.time_per_node_type.end()};
|
|
std::sort(
|
|
time_per_node_type_vec.begin(),
|
|
time_per_node_type_vec.end(),
|
|
[](auto& left, auto& right) { return left.second > right.second; });
|
|
|
|
std::cout << "Time per node type:" << std::endl;
|
|
for (const auto& p : time_per_node_type_vec) {
|
|
const std::string& kind = p.first;
|
|
const double ms = p.second;
|
|
std::cout << std::setw(15) << ms << " ms. " << std::setw(10)
|
|
<< results.percent_per_node_type[kind] << "%. " << kind << " ("
|
|
<< results.instances_per_node_type[kind] << " nodes)"
|
|
<< std::endl;
|
|
}
|
|
std::cout << std::setw(15) << results.total_time << " ms. in Total"
|
|
<< std::endl;
|
|
|
|
if (planner_) {
|
|
std::cout << "Total memory managed: " << planner_->total_managed()
|
|
<< " bytes" << std::endl;
|
|
}
|
|
if (module_->opts.optimize_memory) {
|
|
std::cout << "Total number of reused registers: " << module_->reused_regs
|
|
<< std::endl;
|
|
}
|
|
}
|
|
|
|
float StaticRuntime::benchmark_model(
|
|
const std::vector<c10::IValue>& args,
|
|
const std::unordered_map<std::string, c10::IValue>& kwargs,
|
|
const int warmup_runs,
|
|
const int main_runs) {
|
|
TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1);
|
|
|
|
for (int i = 0; i < warmup_runs; i++) {
|
|
run(args, kwargs);
|
|
}
|
|
caffe2::Timer timer;
|
|
for (int i = 0; i < main_runs; i++) {
|
|
run(args, kwargs);
|
|
}
|
|
float millis = timer.MilliSeconds();
|
|
return millis / static_cast<float>(main_runs);
|
|
}
|
|
|
|
StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops(
|
|
const std::vector<c10::IValue>& args,
|
|
const std::unordered_map<std::string, c10::IValue>& kwargs,
|
|
const int warmup_runs,
|
|
const int main_runs) {
|
|
TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1);
|
|
|
|
// See comment on above use of AutoNonVariableTypeMode for
|
|
// explanation.
|
|
at::AutoNonVariableTypeMode non_var_type_mode(true);
|
|
|
|
IndividualMetrics results;
|
|
results.total_time = 0.0;
|
|
results.time_per_node.resize(nodes_.size(), 0);
|
|
|
|
// setup time
|
|
caffe2::Timer timer;
|
|
std::vector<IValue> stack(args);
|
|
if (!kwargs.empty()) {
|
|
// This is not ideal
|
|
TORCH_CHECK(
|
|
module_->schema != nullptr,
|
|
"Schema is not available. Consider creating the Static Runtime "
|
|
"with StaticRuntime(const torch::jit::Module& m) instead.");
|
|
module_->schema->checkAndNormalizeInputs(stack, kwargs);
|
|
}
|
|
for (size_t i = 0; i < stack.size(); i++) {
|
|
Input(i) = stack[i];
|
|
}
|
|
results.setup_time = timer.MilliSeconds();
|
|
|
|
// warmup runs
|
|
for (int i = 0; i < warmup_runs; i++) {
|
|
run(args, kwargs);
|
|
}
|
|
|
|
// main runs
|
|
for (int i = 0; i < main_runs; i++) {
|
|
if (planner_) {
|
|
planner_->allocate();
|
|
}
|
|
for (size_t j = 0; j < nodes_.size(); j++) {
|
|
timer.Start();
|
|
nodes_[j].run();
|
|
float millis = timer.MilliSeconds();
|
|
results.time_per_node[j] += millis;
|
|
}
|
|
if (opts_.cleanup_activations) {
|
|
if (!planner_) {
|
|
std::unordered_map<Value*, std::vector<Value*>> shared;
|
|
planner_ = std::make_unique<MemoryPlanner>(this, shared);
|
|
}
|
|
planner_->deallocate();
|
|
}
|
|
}
|
|
|
|
// post processing
|
|
for (size_t i = 0; i < nodes_.size(); i++) {
|
|
const Node* node = nodes_[i].get_node();
|
|
std::string kind = std::string(node->kind().toQualString());
|
|
results.time_per_node[i] /= static_cast<float>(main_runs);
|
|
results.time_per_node_type[kind] += results.time_per_node[i];
|
|
results.instances_per_node_type[kind]++;
|
|
results.total_time += results.time_per_node[i];
|
|
}
|
|
for (const auto& p : results.time_per_node_type) {
|
|
const std::string& kind = p.first;
|
|
results.percent_per_node_type[kind] = p.second / results.total_time * 100;
|
|
}
|
|
return results;
|
|
}
|
|
|
|
MemoryPlanner::MemoryPlanner(
|
|
StaticRuntime* runtime,
|
|
std::unordered_map<Value*, std::vector<Value*>> should_share) {
|
|
// get input Value*
|
|
at::ArrayRef<Value*> inputs =
|
|
runtime->get_inference_module()->graph->inputs();
|
|
std::unordered_set<Value*> graph_input_values(inputs.begin(), inputs.end());
|
|
|
|
// collect register indices of outputs of ops with out variant
|
|
std::unordered_set<Value*> managed_values;
|
|
std::unordered_set<IValue*> unmanaged_value_set;
|
|
for (ProcessedNode& pnode : runtime->get_nodes()) {
|
|
bool should_manage = pnode.has_out_variant();
|
|
if (should_manage && isViewOp(pnode.get_node())) {
|
|
// outputs of view ops with inputs as the graph inputs shouldn't be
|
|
// managed by the MemoryPlanner. It may release the storage of the graph
|
|
// inputs.
|
|
for (Value* in : pnode.get_node()->inputs()) {
|
|
if (graph_input_values.count(in) > 0) {
|
|
should_manage = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (should_manage) {
|
|
// Types are stored in the underlying TorchScript IR
|
|
for (Value* out : pnode.get_node()->outputs()) {
|
|
if (out->type()->cast<TensorType>()) {
|
|
managed_values.insert(out);
|
|
}
|
|
}
|
|
} else {
|
|
for (auto i = 0; i < pnode.outputs().size(); ++i) {
|
|
unmanaged_value_set.insert(&pnode.Output(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
const InferenceModule* module = runtime->get_inference_module();
|
|
|
|
// remove model outputs from managed_values
|
|
for (Value* output : module->graph->outputs()) {
|
|
managed_values.erase(output);
|
|
}
|
|
for (IValue* output : runtime->outputs()) {
|
|
unmanaged_value_set.erase(output);
|
|
}
|
|
for (IValue* out : unmanaged_value_set) {
|
|
unmanaged_values_.emplace_back(out);
|
|
}
|
|
|
|
// remove tensors in output List/Tuple from managed_values
|
|
for (Value* output : module->graph->outputs()) {
|
|
Node* output_node = output->node();
|
|
if (output_node->kind() == prim::TupleConstruct ||
|
|
output_node->kind() == prim::ListConstruct) {
|
|
for (Value* input : output_node->inputs()) {
|
|
managed_values.erase(input);
|
|
}
|
|
}
|
|
}
|
|
|
|
// some Values should share storage, this map will
|
|
// keep track of the index into managed_storage_
|
|
std::unordered_map<Value*, size_t> shared;
|
|
// the StorageImpls of Tensor views should not be managed
|
|
std::unordered_set<c10::StorageImpl*> managed_storage_impls;
|
|
|
|
// Snapshot of the current memory state
|
|
for (const auto& pnode : runtime->get_nodes()) {
|
|
for (auto i = 0; i < pnode.outputs().size(); ++i) {
|
|
const auto& ival = pnode.outputs()[i];
|
|
auto* val = pnode.get_node()->outputs()[i];
|
|
if (managed_values.count(val)) {
|
|
TORCH_CHECK(ival.isTensor());
|
|
auto* impl = ival.toTensor().storage().unsafeGetStorageImpl();
|
|
|
|
auto didInsert = managed_storage_impls.insert(impl).second;
|
|
if (!didInsert) {
|
|
continue;
|
|
}
|
|
|
|
if (shared.count(val)) {
|
|
managed_storage_[shared.at(val)].second.emplace_back(impl);
|
|
} else {
|
|
auto p =
|
|
std::make_pair<size_t, std::vector<c10::StorageImpl*>>(0, {impl});
|
|
managed_storage_.emplace_back(std::move(p));
|
|
// first of a group, update the shared map with the index
|
|
if (should_share.count(val)) {
|
|
for (auto v : should_share.at(val)) {
|
|
shared[v] = managed_storage_.size() - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't change the size if it is already aligned, otherwise increase the size
|
|
// to make it aligned.
|
|
size_t MemoryPlanner::compute_aligned_tensor_size(size_t nbytes) {
|
|
// Note: everything below is size_t
|
|
return (nbytes + c10::gAlignment - 1) & (~(c10::gAlignment - 1));
|
|
}
|
|
|
|
at::DataPtr MemoryPlanner::allocate_buffer(size_t size) {
|
|
at::Allocator* allocator = c10::GetCPUCachingAllocator();
|
|
return allocator->allocate(size);
|
|
}
|
|
|
|
void MemoryPlanner::allocate() {
|
|
if (managed_bytes_ == 0) {
|
|
return;
|
|
}
|
|
buffer_ = allocate_buffer(managed_bytes_);
|
|
|
|
size_t offset = 0;
|
|
uint8_t* start = static_cast<uint8_t*>(buffer_.get());
|
|
for (const auto& ms : managed_storage_) {
|
|
auto tensor_size = ms.first;
|
|
if (tensor_size == 0) {
|
|
continue;
|
|
}
|
|
const auto& impls = ms.second;
|
|
DCHECK_LE(offset + tensor_size, managed_bytes_);
|
|
void* src = static_cast<void*>(start + offset);
|
|
|
|
for (auto& impl : impls) {
|
|
impl->set_data_ptr(at::DataPtr(src, src, nullptr, impl->device()));
|
|
impl->set_nbytes(tensor_size);
|
|
}
|
|
|
|
offset += tensor_size;
|
|
}
|
|
DCHECK_EQ(offset, managed_bytes_);
|
|
}
|
|
|
|
void MemoryPlanner::deallocate() {
|
|
managed_bytes_ = 0;
|
|
|
|
// free memory used by outputs of ops in out variants
|
|
// but keep the TensorImpl and StorageImpl around
|
|
for (auto& ms : managed_storage_) {
|
|
const auto& impls = ms.second;
|
|
size_t max = 0;
|
|
for (auto& impl : impls) {
|
|
size_t current_size = compute_aligned_tensor_size(impl->nbytes());
|
|
impl->reset();
|
|
max = std::max(max, current_size);
|
|
}
|
|
ms.first = max;
|
|
managed_bytes_ += max;
|
|
}
|
|
for (auto& iv : unmanaged_values_) {
|
|
*iv = IValue();
|
|
}
|
|
buffer_ = {};
|
|
}
|
|
|
|
ProcessedNode::ProcessedNode(
|
|
Node* node,
|
|
std::vector<const IValue*>&& inputs,
|
|
bool enable_out_variants)
|
|
: node_(node), inputs_(std::move(inputs)) {
|
|
// TODO leverage type information
|
|
outputs_.resize(node->outputs().size());
|
|
if (node->kind() != prim::ListConstruct &&
|
|
node->kind() != prim::TupleConstruct &&
|
|
node->kind() != prim::ListUnpack) {
|
|
const Operator& op = node->getOperator();
|
|
TORCH_CHECK(op.hasOperation());
|
|
op_ = op.getOperation(node);
|
|
}
|
|
if (enable_out_variants && canRunOutOfPlace(node)) {
|
|
fn_ = getOutOfPlaceOperation(node);
|
|
std::ostringstream ss;
|
|
node->print(ss, 0, nullptr, false);
|
|
VLOG(1) << "Switch to out variant for node: " << ss.str();
|
|
} else if (canRunNatively(node)) {
|
|
native_fn_ = getNativeOperation(node);
|
|
std::ostringstream ss;
|
|
node->print(ss, 0, nullptr, false);
|
|
VLOG(1) << "Switch to native impl for node: " << ss.str();
|
|
} else {
|
|
std::ostringstream ss;
|
|
node->print(ss, 0, nullptr, false);
|
|
VLOG(1) << "Fallback interpreter for node: " << ss.str();
|
|
}
|
|
}
|
|
|
|
void ProcessedNode::run() {
|
|
if (fn_) {
|
|
fn_(this);
|
|
} else if (native_fn_) {
|
|
native_fn_(this);
|
|
} else {
|
|
std::vector<IValue> stack;
|
|
const size_t size = node_->inputs().size();
|
|
stack.reserve(size);
|
|
for (size_t i = 0; i < size; i++) {
|
|
stack.emplace_back(Input(i));
|
|
}
|
|
|
|
DCHECK(op_);
|
|
op_->operator()(&stack);
|
|
|
|
DCHECK_EQ(stack.size(), node_->outputs().size());
|
|
for (auto i = 0; i < node_->outputs().size(); i++) {
|
|
Output(i) = std::move(stack[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|