#include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { void PrepareGraphForStaticRuntime(std::shared_ptr graph) { Inline(*graph); ConstantPropagation(graph); Canonicalize(graph); ConstantPropagation(graph); RemoveTensorMutation(graph); ConstantPropagation(graph); EliminateDeadCode(graph); } namespace { void OptimizeGraph(std::shared_ptr& graph) { PrepareGraphForStaticRuntime(graph); FuseInferenceOpsForSparseNN(graph); ConstantPropagation(graph); } void CheckGraphEligibility(const std::shared_ptr& graph) { for (auto n : graph->nodes()) { if (n->kind() == c10::Symbol::fromQualString("prim::GetAttr")) { throw std::runtime_error("Cannot accelerate unfrozen graphs"); } } // check output types // Static Runtime supports output types include None, Tensor and List/Tuple // of Tensor for (Value* output : graph->outputs()) { VLOG(1) << "output: %" << output->debugName() << " has type: " << output->type()->repr_str(); auto kind = output->node()->kind(); if (kind == prim::TupleConstruct || kind == prim::ListConstruct) { for (Value* input : output->node()->inputs()) { const auto& type = input->type(); TORCH_CHECK( type->cast() != nullptr, "Static Runtime expects output type as List or Tuple of Tensor, but got List or Tuple of ", type->repr_str()); } } else { const auto& type = output->type(); TORCH_CHECK( type->cast() != nullptr || type->cast() != nullptr, "Static Runtime expects output type as None or Tensor, but got ", type->repr_str()); } } } // remove unused input 0 from graph void RemoveSelfFromGraphInput(std::shared_ptr& graph) { if (graph->inputs().at(0)->type()->is_module()) { TORCH_CHECK(!graph->inputs().at(0)->hasUses()); graph->eraseInput(0); } } // remove "self" from function schema std::unique_ptr RemoveSelfFromSchema( const c10::FunctionSchema& s) { TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self"); std::vector args({s.arguments().begin() + 1, s.arguments().end()}); return std::make_unique(s.cloneWithArguments(args)); } // Returns two useful constructs: // first: map each value to all values that are alive // at the same time. // second: set of all inputs/outputs/constants (always alive) std::pair>, std::set> LivenessMap(const std::shared_ptr& graph) { std::unordered_map> liveness_map; std::set always_alive; std::vector frontier; // map live values to their deps, invariant: set.size() > 0 std::unordered_map> live_values; for (const auto& input : graph->inputs()) { frontier.emplace_back(input); always_alive.insert(input); } for (const auto& output : graph->outputs()) { always_alive.insert(output); } auto add_live_value = [&](Value* v) { liveness_map[v] = {}; for (const auto& live_v : live_values) { liveness_map.at(v).insert(live_v.first); liveness_map.at(live_v.first).insert(v); } // only add values to the live set if they // have deps, otherwise they die immediately if (v->uses().size()) { live_values[v] = {}; } for (const auto& u : v->uses()) { const auto& node = u.user; // track deps of this value live_values.at(v).insert(node); } }; auto traverse_node = [&](Node* node, std::vector& dead) { for (const auto& input : node->inputs()) { // ignore constant values if (input->node()->kind() == prim::Constant) { always_alive.insert(input); continue; } if (live_values.count(input)) { live_values.at(input).erase(node); if (!live_values.at(input).size()) { dead.emplace_back(input); } } } }; for (const auto& node : graph->nodes()) { for (const auto& v : node->outputs()) { add_live_value(v); } std::vector dead; traverse_node(node, dead); for (const auto& dead_value : dead) { live_values.erase(dead_value); } } for (const auto& v : live_values) { TORCH_CHECK(always_alive.count(v.first)); } for (const auto& node : graph->nodes()) { for (const auto& input : node->inputs()) { for (const auto& output : node->outputs()) { if (liveness_map.count(input) && liveness_map.count(output)) { liveness_map.at(input).insert(output); liveness_map.at(output).insert(input); } } } } return std::make_pair(liveness_map, always_alive); } std::unordered_set GetOptimizableValues( const std::shared_ptr& graph) { std::unordered_set can_reuse; // values used by unsupported ops (as either inputs or outputs) // these need to be removed from "can_reuse" after analyzing all nodes std::unordered_set cannot_reuse; for (const auto& n : graph->nodes()) { for (const auto& v : n->inputs()) { if (canRunOutOfPlace(n) && canReuseInputsOutputs(n) && canReuseInputs(n)) { can_reuse.insert(v); } else { cannot_reuse.insert(v); } } for (const auto& v : n->outputs()) { if (canRunOutOfPlace(n) && canReuseInputsOutputs(n) && canReuseOutputs(n)) { can_reuse.insert(v); } else { cannot_reuse.insert(v); } } } for (auto v : cannot_reuse) { can_reuse.erase(v); } return can_reuse; } size_t AssignRegisters( const std::shared_ptr& graph, std::unordered_map& value_to_reg, std::vector& values, std::vector& input_regs, std::vector& output_regs, bool optimize_memory) { auto lm = LivenessMap(graph); auto optimizable_values = GetOptimizableValues(graph); size_t num_regs = 0; size_t reused_regs = 0; std::unordered_map> reg_to_val; auto getReg = [&](Value* v) -> size_t { if (!optimize_memory) { return num_regs++; } TORCH_CHECK(!value_to_reg.count(v)); auto iter = lm.first.find(v); if (iter == lm.first.end()) { return num_regs++; } if (!optimizable_values.count(v)) { return num_regs++; } if (lm.second.count(v)) { return num_regs++; } const auto& live_values = iter->second; // iterate through all the allocated registers // and check for potential re-use, greedily for (const auto& v2r : value_to_reg) { auto candidate_v = v2r.first; if (!optimizable_values.count(candidate_v)) { continue; } if (lm.second.count(candidate_v)) { continue; } // Only re-use float* tensors auto t = candidate_v->type()->cast(); if (!t) { continue; } // TODO audit this assumption (passes tests, but is scary) if (t->scalarType() && *(t->scalarType()) != at::kFloat) { continue; } // TODO // if (*(t->scalarType()) != at::kFloat) { // continue; //} if (!live_values.count(candidate_v)) { bool already_used = false; for (auto use : reg_to_val.at(v2r.second)) { if (live_values.count(use)) { already_used = true; } } if (already_used) { continue; } reused_regs++; return v2r.second; } } return num_regs++; }; // assign register to Value* for (Value* input : graph->inputs()) { TORCH_CHECK(value_to_reg.count(input) == 0); auto reg = getReg(input); value_to_reg[input] = reg; reg_to_val[reg].insert(input); input_regs.push_back(reg); } for (Node* node : graph->nodes()) { for (Value* input : node->inputs()) { TORCH_CHECK(value_to_reg.count(input) > 0); } for (Value* output : node->outputs()) { TORCH_CHECK( value_to_reg.count(output) == 0, "the graph needs to be in SSA form"); auto reg = getReg(output); value_to_reg[output] = reg; reg_to_val[reg].insert(output); } } TORCH_CHECK(graph->outputs().size() > 0); for (Value* output : graph->outputs()) { TORCH_CHECK(value_to_reg.count(output) > 0); output_regs.push_back(value_to_reg[output]); } values.resize(value_to_reg.size()); for (const auto& p : value_to_reg) { values[p.second] = p.first; } return reused_regs; } // Internal values are discarded after run if // opts_.cleanup_activations is true. void DeduceInternalValues( const std::shared_ptr& graph, const std::unordered_map& value_to_reg, std::vector& internals) { std::unordered_set outputs{ graph->outputs().begin(), graph->outputs().end()}; for (Node* node : graph->nodes()) { if (node->kind() != prim::Constant) { for (Value* output : node->outputs()) { if (outputs.count(output) == 0) { internals.push_back(value_to_reg.at(output)); } } } } } } // namespace void InferenceModule::init() { OptimizeGraph(graph); CheckGraphEligibility(graph); RemoveSelfFromGraphInput(graph); reused_regs = AssignRegisters( graph, value_to_reg, values, input_regs, output_regs, opts.optimize_memory); DeduceInternalValues(graph, value_to_reg, internals); } InferenceModule::InferenceModule( const torch::jit::Module& m, InferenceModuleOptions opts_) : module(m.copy()), graph(nullptr), schema(nullptr), opts(opts_) { module.eval(); module = freeze_module(module); Method method = module.get_method("forward"); graph = method.graph(); const c10::FunctionSchema& s = method.function().getSchema(); schema = RemoveSelfFromSchema(s); init(); } InferenceModule::InferenceModule( std::shared_ptr g, InferenceModuleOptions opts_) : module(), graph(std::move(g)), schema(nullptr), opts(opts_) { init(); } StaticRuntime::StaticRuntime( const torch::jit::Module& m, const StaticRuntimeOptions& opts) : StaticRuntime(PrepareForStaticRuntime(m), opts) {} StaticRuntime::StaticRuntime( std::shared_ptr m, const StaticRuntimeOptions& opts) : module_(m), opts_(opts) { TORCH_CHECK( module_ != nullptr, "std::shared_ptr module_ cannot be nullptr") Graph* graph = module_->graph.get(); std::unordered_map val_to_ival; // NB: create an unchanging std::vector we can reference for (auto input : graph->inputs()) { inputs_.emplace_back(); } for (auto i = 0; i < graph->inputs().size(); ++i) { Value* input = graph->inputs()[i]; val_to_ival[input] = &(inputs_[i]); } // fill workspace_ with constants and create ProcessedNodes // NB: before optimizing the order of execution, ensure that the // memory optimization pass (LivenessMap + AssignRegisters) is // aware of the new order! // Fill constants first, so we have a std::vector we can reference // later for (Node* node : graph->nodes()) { if (node->kind() != prim::Constant) { continue; } auto* v = node->output(); TORCH_CHECK(v->type()->kind() != FunctionType::Kind); constants_.emplace_back(toIValue(v).value()); } { int i = 0; for (Node* node : graph->nodes()) { if (node->kind() != prim::Constant) { continue; } auto* v = node->output(); val_to_ival[v] = &(constants_[i++]); } } for (Node* node : graph->nodes()) { if (node->kind() == prim::Constant) { continue; } std::vector inputs; for (Value* input : node->inputs()) { inputs.emplace_back(val_to_ival.at(input)); } nodes_.emplace_back( ProcessedNode(node, std::move(inputs), opts.enable_out_variant)); for (auto i = 0; i < node->outputs().size(); ++i) { val_to_ival[node->outputs()[i]] = &nodes_.back().Output(i); } } for (auto output : graph->outputs()) { outputs_.emplace_back(val_to_ival.at(output)); } } size_t StaticRuntime::num_outputs() const { return module_->output_regs.size(); } std::vector StaticRuntime::run( const std::vector& inps) { std::vector stack; stack.resize(inps.size()); for (size_t i = 0; i < inps.size(); i++) { stack[i] = inps[i]; } c10::IValue v = run(stack, std::unordered_map()); std::vector out; if (v.isTuple()) { auto t = v.toTuple(); for (const auto& el : t->elements()) { out.emplace_back(el.toTensor()); } } else { out.emplace_back(v.toTensor()); } return out; } c10::IValue StaticRuntime::run( const std::vector& args, const std::unordered_map& kwargs) { // We assume inference workloads, so we do not need // autograd. Enabling this is a significant win on dispatcher // overhead because it saves a round of dispatch for at least some // functions, such as resize_ and resize_as_. at::AutoNonVariableTypeMode non_var_type_mode(true); if (planner_) { planner_->allocate(); } if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( module_->schema != nullptr, "Schema is not available. Consider creating the Static Runtime " "with StaticRuntime(const torch::jit::Module& m) instead."); std::vector s = args; module_->schema->checkAndNormalizeInputs(s, kwargs); for (size_t i = 0; i < s.size(); i++) { Input(i) = s[i]; } } else { for (size_t i = 0; i < args.size(); i++) { Input(i) = args[i]; } } // NB: before optimizing the order of execution, ensure that the // memory optimization pass (LivenessMap + AssignRegisters) is // aware of the new order! for (auto& n : nodes_) { n.run(); } if (opts_.cleanup_activations) { if (!planner_) { std::unordered_map> shared; planner_ = std::make_unique(this, shared); } planner_->deallocate(); } // no need to keep references of outputs in static runtime anymore if (num_outputs() > 1) { std::vector outputs; outputs.reserve(num_outputs()); for (auto i = 0; i < num_outputs(); ++i) { outputs.emplace_back(Output(i)); } return c10::ivalue::Tuple::create(outputs); } return Output(0); } void StaticRuntime::benchmark( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { float time_per_iter = benchmark_model(args, kwargs, warmup_runs, main_runs); std::cout << "Static runtime ms per iter: " << time_per_iter << ". Iters per second: " << 1000.0 / time_per_iter << std::endl; IndividualMetrics results = benchmark_individual_ops(args, kwargs, warmup_runs, main_runs); std::cout << "Setting up took " << results.setup_time << " ms" << std::endl; for (size_t i = 0; i < nodes_.size(); i++) { const Node* node = nodes_[i].get_node(); std::cout << "Node #" << i << ": " << results.time_per_node[i] << " ms/iter, "; node->print(std::cout, 0, nullptr, false); } std::vector> time_per_node_type_vec{ results.time_per_node_type.begin(), results.time_per_node_type.end()}; std::sort( time_per_node_type_vec.begin(), time_per_node_type_vec.end(), [](auto& left, auto& right) { return left.second > right.second; }); std::cout << "Time per node type:" << std::endl; for (const auto& p : time_per_node_type_vec) { const std::string& kind = p.first; const double ms = p.second; std::cout << std::setw(15) << ms << " ms. " << std::setw(10) << results.percent_per_node_type[kind] << "%. " << kind << " (" << results.instances_per_node_type[kind] << " nodes)" << std::endl; } std::cout << std::setw(15) << results.total_time << " ms. in Total" << std::endl; if (planner_) { std::cout << "Total memory managed: " << planner_->total_managed() << " bytes" << std::endl; } if (module_->opts.optimize_memory) { std::cout << "Total number of reused registers: " << module_->reused_regs << std::endl; } } float StaticRuntime::benchmark_model( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); for (int i = 0; i < warmup_runs; i++) { run(args, kwargs); } caffe2::Timer timer; for (int i = 0; i < main_runs; i++) { run(args, kwargs); } float millis = timer.MilliSeconds(); return millis / static_cast(main_runs); } StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); // See comment on above use of AutoNonVariableTypeMode for // explanation. at::AutoNonVariableTypeMode non_var_type_mode(true); IndividualMetrics results; results.total_time = 0.0; results.time_per_node.resize(nodes_.size(), 0); // setup time caffe2::Timer timer; std::vector stack(args); if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( module_->schema != nullptr, "Schema is not available. Consider creating the Static Runtime " "with StaticRuntime(const torch::jit::Module& m) instead."); module_->schema->checkAndNormalizeInputs(stack, kwargs); } for (size_t i = 0; i < stack.size(); i++) { Input(i) = stack[i]; } results.setup_time = timer.MilliSeconds(); // warmup runs for (int i = 0; i < warmup_runs; i++) { run(args, kwargs); } // main runs for (int i = 0; i < main_runs; i++) { if (planner_) { planner_->allocate(); } for (size_t j = 0; j < nodes_.size(); j++) { timer.Start(); nodes_[j].run(); float millis = timer.MilliSeconds(); results.time_per_node[j] += millis; } if (opts_.cleanup_activations) { if (!planner_) { std::unordered_map> shared; planner_ = std::make_unique(this, shared); } planner_->deallocate(); } } // post processing for (size_t i = 0; i < nodes_.size(); i++) { const Node* node = nodes_[i].get_node(); std::string kind = std::string(node->kind().toQualString()); results.time_per_node[i] /= static_cast(main_runs); results.time_per_node_type[kind] += results.time_per_node[i]; results.instances_per_node_type[kind]++; results.total_time += results.time_per_node[i]; } for (const auto& p : results.time_per_node_type) { const std::string& kind = p.first; results.percent_per_node_type[kind] = p.second / results.total_time * 100; } return results; } MemoryPlanner::MemoryPlanner( StaticRuntime* runtime, std::unordered_map> should_share) { // get input Value* at::ArrayRef inputs = runtime->get_inference_module()->graph->inputs(); std::unordered_set graph_input_values(inputs.begin(), inputs.end()); // collect register indices of outputs of ops with out variant std::unordered_set managed_values; std::unordered_set unmanaged_value_set; for (ProcessedNode& pnode : runtime->get_nodes()) { bool should_manage = pnode.has_out_variant(); if (should_manage && isViewOp(pnode.get_node())) { // outputs of view ops with inputs as the graph inputs shouldn't be // managed by the MemoryPlanner. It may release the storage of the graph // inputs. for (Value* in : pnode.get_node()->inputs()) { if (graph_input_values.count(in) > 0) { should_manage = false; break; } } } if (should_manage) { // Types are stored in the underlying TorchScript IR for (Value* out : pnode.get_node()->outputs()) { if (out->type()->cast()) { managed_values.insert(out); } } } else { for (auto i = 0; i < pnode.outputs().size(); ++i) { unmanaged_value_set.insert(&pnode.Output(i)); } } } const InferenceModule* module = runtime->get_inference_module(); // remove model outputs from managed_values for (Value* output : module->graph->outputs()) { managed_values.erase(output); } for (IValue* output : runtime->outputs()) { unmanaged_value_set.erase(output); } for (IValue* out : unmanaged_value_set) { unmanaged_values_.emplace_back(out); } // remove tensors in output List/Tuple from managed_values for (Value* output : module->graph->outputs()) { Node* output_node = output->node(); if (output_node->kind() == prim::TupleConstruct || output_node->kind() == prim::ListConstruct) { for (Value* input : output_node->inputs()) { managed_values.erase(input); } } } // some Values should share storage, this map will // keep track of the index into managed_storage_ std::unordered_map shared; // the StorageImpls of Tensor views should not be managed std::unordered_set managed_storage_impls; // Snapshot of the current memory state for (const auto& pnode : runtime->get_nodes()) { for (auto i = 0; i < pnode.outputs().size(); ++i) { const auto& ival = pnode.outputs()[i]; auto* val = pnode.get_node()->outputs()[i]; if (managed_values.count(val)) { TORCH_CHECK(ival.isTensor()); auto* impl = ival.toTensor().storage().unsafeGetStorageImpl(); auto didInsert = managed_storage_impls.insert(impl).second; if (!didInsert) { continue; } if (shared.count(val)) { managed_storage_[shared.at(val)].second.emplace_back(impl); } else { auto p = std::make_pair>(0, {impl}); managed_storage_.emplace_back(std::move(p)); // first of a group, update the shared map with the index if (should_share.count(val)) { for (auto v : should_share.at(val)) { shared[v] = managed_storage_.size() - 1; } } } } } } } // Don't change the size if it is already aligned, otherwise increase the size // to make it aligned. size_t MemoryPlanner::compute_aligned_tensor_size(size_t nbytes) { // Note: everything below is size_t return (nbytes + c10::gAlignment - 1) & (~(c10::gAlignment - 1)); } at::DataPtr MemoryPlanner::allocate_buffer(size_t size) { at::Allocator* allocator = c10::GetCPUCachingAllocator(); return allocator->allocate(size); } void MemoryPlanner::allocate() { if (managed_bytes_ == 0) { return; } buffer_ = allocate_buffer(managed_bytes_); size_t offset = 0; uint8_t* start = static_cast(buffer_.get()); for (const auto& ms : managed_storage_) { auto tensor_size = ms.first; if (tensor_size == 0) { continue; } const auto& impls = ms.second; DCHECK_LE(offset + tensor_size, managed_bytes_); void* src = static_cast(start + offset); for (auto& impl : impls) { impl->set_data_ptr(at::DataPtr(src, src, nullptr, impl->device())); impl->set_nbytes(tensor_size); } offset += tensor_size; } DCHECK_EQ(offset, managed_bytes_); } void MemoryPlanner::deallocate() { managed_bytes_ = 0; // free memory used by outputs of ops in out variants // but keep the TensorImpl and StorageImpl around for (auto& ms : managed_storage_) { const auto& impls = ms.second; size_t max = 0; for (auto& impl : impls) { size_t current_size = compute_aligned_tensor_size(impl->nbytes()); impl->reset(); max = std::max(max, current_size); } ms.first = max; managed_bytes_ += max; } for (auto& iv : unmanaged_values_) { *iv = IValue(); } buffer_ = {}; } ProcessedNode::ProcessedNode( Node* node, std::vector&& inputs, bool enable_out_variants) : node_(node), inputs_(std::move(inputs)) { // TODO leverage type information outputs_.resize(node->outputs().size()); if (node->kind() != prim::ListConstruct && node->kind() != prim::TupleConstruct && node->kind() != prim::ListUnpack) { const Operator& op = node->getOperator(); TORCH_CHECK(op.hasOperation()); op_ = op.getOperation(node); } if (enable_out_variants && canRunOutOfPlace(node)) { fn_ = getOutOfPlaceOperation(node); std::ostringstream ss; node->print(ss, 0, nullptr, false); VLOG(1) << "Switch to out variant for node: " << ss.str(); } else if (canRunNatively(node)) { native_fn_ = getNativeOperation(node); std::ostringstream ss; node->print(ss, 0, nullptr, false); VLOG(1) << "Switch to native impl for node: " << ss.str(); } else { std::ostringstream ss; node->print(ss, 0, nullptr, false); VLOG(1) << "Fallback interpreter for node: " << ss.str(); } } void ProcessedNode::run() { if (fn_) { fn_(this); } else if (native_fn_) { native_fn_(this); } else { std::vector stack; const size_t size = node_->inputs().size(); stack.reserve(size); for (size_t i = 0; i < size; i++) { stack.emplace_back(Input(i)); } DCHECK(op_); op_->operator()(&stack); DCHECK_EQ(stack.size(), node_->outputs().size()); for (auto i = 0; i < node_->outputs().size(); i++) { Output(i) = std::move(stack[i]); } } } } // namespace jit } // namespace torch