Commit Graph

4284 Commits

Author SHA1 Message Date
Huy Do
4080b1db28 Set check-latest to false when setup python and pip cache in CI (#87621)
I missed the fine print in https://github.com/actions/setup-python/blob/main/README.md#caching-packages-dependencies when setting up the cache using setup-python GHA

> Restored cache will not be used if the requirements.txt file is not updated for a long time and a newer version of the dependency is available which can lead to an increase in total build time.

The latter part is important because it implies that even with the cache, pip will still try to check if a newer version exists and that part can be flaky, i.e. https://github.com/pytorch/pytorch/actions/runs/3313764038/jobs/5472180293

This undesired behavior can be turned off by setting the advance option `check-latest` to false https://github.com/actions/setup-python/blob/main/docs/advanced-usage.md#check-latest-version. Per my understanding, this should tell pip install in these workflows to use the local cached copy of the package avoiding the need to query pypi every single time.

`check-latest` was added quite recently https://github.com/actions/setup-python/pull/406, so `actionlint-1.6.15` fails to recognize it. Thus, this PR also upgrades `actionlint` to the latest 1.6.21 to pass the linter check. Here is an example error from 1.6.15 from https://github.com/pytorch/pytorch/actions/runs/3315388073/jobs/5475918454:

```
>>> Lint for .github/workflows/lint.yml:

  Error (ACTIONLINT) [action]
    input "check-latest" is not defined in action "actions/setup-python@v4".
    available inputs are "architecture", "cache", "cache-dependency-path",
    "python-version", "python-version-file", "token"

         25  |        with:
         26  |          python-version: 3.8
         27  |          architecture: x64
    >>>  28  |          check-latest: false
         29  |          cache: pip
         30  |          cache-dependency-path: |
         31  |            **/.github/requirements-gha-cache.txt
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87621
Approved by: https://github.com/ZainRizvi
2022-10-26 19:23:55 +00:00
albanD
777e6a2c51 Many symintifications (#87604)
Adds
expand_inplace
conv conv_double_backward
convolution
adaptive_avg_pool2d_symint
_embedding_bag_backward_symint
cudnn_grid_sampler
cuda 32 bit indexing
nll_loss / nll_loss_2d
tensor split
pooling same mode
cudnn_is_acceptable
storage nbytes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87604
Approved by: https://github.com/ezyang
2022-10-26 17:33:53 +00:00
Soof Golan
874a94ce94 Fix tensor.stride() type hint (#84177)
`tensor.stride()` now hints at tuple of variable length instead of tuple with constant length of 1

Fixes #84176

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84177
Approved by: https://github.com/Chillee
2022-10-25 04:43:10 +00:00
Tom Stein
fd60b818b9 [Python] refactor slices on sorted (#86995)
Sometimes you want to query the small element of a set of elements and use `sorted(elements)[0]` without a second thought. However, this is not optimal, since the entire list must be sorted first `O(n log n)`. It would be better to use the `min(elements)` method provided for this purpose `O(n)`.
Furthermore `sorted(elements)[::-1]` is not very efficient, because it would be better to use `sorted(elements, reverse=True)` to save the slice operation.

**TLDR: using `sorted(elements)[0]` is slow and can be replaced with `min(elements)`.**

I stumbled across these code snippets while playing around with CodeQL (see https://lgtm.com/query/4148064474379348546/).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86995
Approved by: https://github.com/jansel
2022-10-25 04:07:19 +00:00
Jane Xu
1bcd63d5e1 [BE][einsum] add small comment explaining an invariant (#87264)
Tiny followup from https://github.com/pytorch/pytorch/pull/87135#discussion_r998488064

and another typo i noticed while doing the autograd lab
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87264
Approved by: https://github.com/soulitzer
2022-10-24 15:09:40 +00:00
lezcano
faf9c47abb Simplify a few diagonal-related functions (#87180)
`diag` was unnecessarily implemented as a kernel rather than as a composite
function, which made it unnecessarily difficult (explicit backward + all it entails).

We also change a few uses of `diag` on 2D tensors for `diagonal()`. The
latter returns a view rather than creating a new tensor.

We also upgrade its meta implementation to a fully-fledged
decomposition

I tried implementing the backwards of `diagonal()` via `diag_scatter` (or better `diag_scatter_` to keep the perf) but functionalisation was failing and I was not sure how to fix this, so I moved on. It may be possible to simplify that one as well if @soulitzer or someone knows how to do this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87180
Approved by: https://github.com/ngimel, https://github.com/albanD, https://github.com/mruberry
2022-10-24 06:11:53 +00:00
lezcano
08c2314d98 [PrimTorch] Add maker for *_copy variants of view functions (#87278)
Implements `diagonal_copy` as an example. This PR also fixes a number of
correcness issues with `diagonal_copy`.

cc @ezyang @mruberry @ngimel @Lezcano @fdrocha
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87278
Approved by: https://github.com/mruberry
2022-10-24 06:11:53 +00:00
William Wen
6efdcb0788 Add dynamo smoke test (#87400)
https://github.com/pytorch/torchdynamo/issues/1733

Move the old smoke test over from the old dynamo repo.

cc @jansel @lezcano @fdrocha
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87400
Approved by: https://github.com/msaroufim
2022-10-21 17:30:14 +00:00
albanD
12b2f70a89 Symintify pad ops (#87046)
Following comments below, we need to add support for `std::negate`/`std::min`/`std::max`/`operator-` for SymInt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87046
Approved by: https://github.com/ezyang
2022-10-19 21:43:08 +00:00
Brian Hirsh
4801397b6e ban .sizes() and .strides() calls in derivatives.yaml (#86611)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86611
Approved by: https://github.com/wconstab, https://github.com/albanD
2022-10-19 15:59:28 +00:00
anjali411
182ee87996 symintify nll loss fns (#86915) (#87095)
This reverts commit bbd7b38d55.

Reland https://github.com/pytorch/pytorch/pull/86915 with a fix for python arg parser handing for SymInt and SymIntList.
This was uncovered because we are calling directly into python bindings code through test_autocast.py (`torch._C._nn.nll_loss`)  without providing a value for the optional symint arg (`ignore_index`). The arg parser constructs the  SymInt and SymIntList using the recorded "default_int" or "default_int_list" (schema string parsing) in case a value is not received for an optional argument. Since we weren't handling the symint case properly, the default_int just had a garbage value which was later being used to construct SymInt.

Follow up issue for other unhandled parameter types: https://github.com/pytorch/pytorch/issues/87283

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87095
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-10-19 14:50:51 +00:00
Nikita Vedeneev
f2ec9fbd03 torch.ormqr: backward support (#86800)
Seems good to have, especially when neither `a` nor `tau` requires grads and/or they are pretty small in number.
Fixes https://github.com/pytorch/pytorch/issues/86267

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86800
Approved by: https://github.com/lezcano
2022-10-18 09:07:35 +00:00
albanD
3a4c0900c7 Reland 3 of Merge more symbolic meta kernels and symint changes from branch (#86795)
Take 3
Contains:
- symintification of split*
- floor support on SymFloat
- pad_backward, gather, scatter meta
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86795
Approved by: https://github.com/z-a-f
2022-10-17 02:09:40 +00:00
Nikita Shulga
3924aa75b1 [BE] Extend linter to detect DOS newlines (#86973)
Fix DOS newlines in `onednn/decompose_silu.[cpp|h]` introduced by https://github.com/pytorch/pytorch/pull/85591 as well as one in `.github/PULL_REQUEST_TEMPLATE.md`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86973
Approved by: https://github.com/huydhn, https://github.com/izaitsevfb
2022-10-15 00:20:42 +00:00
Brian Hirsh
34c86adec4 symintify all of derivatives.yaml (#86610)
Big-bang PR to symintify **all** .sizes() calls in derivatives.yaml, which will be needed for symbolic tracing.

* with the exception of `split()`, which is tougher to land because it requires internal changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86610
Approved by: https://github.com/albanD
2022-10-14 20:15:48 +00:00
PyTorch MergeBot
bbd7b38d55 Revert "symintify nll loss fns (#86915)"
This reverts commit 0ece7c86d8.

Reverted https://github.com/pytorch/pytorch/pull/86915 on behalf of https://github.com/anjali411 due to test_autocast_nn_fp32 fails
2022-10-14 17:22:55 +00:00
anjali411
0ece7c86d8 symintify nll loss fns (#86915)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86915
Approved by: https://github.com/albanD
2022-10-14 17:06:56 +00:00
Mikayla Gawarecki
ab69550678 Add nested squeeze.dim and unsqueeze (#86813)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86813
Approved by: https://github.com/drisspg
2022-10-13 16:05:36 +00:00
albanD
66cab5245f Reland 2 min/max support for SymInt/Floats, finish as_strided/scatter/squeeze() backward symint support (#86797)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86797
Approved by: https://github.com/bdhirsh
2022-10-13 00:31:19 +00:00
PyTorch MergeBot
2aa981ab74 Revert "Reland 2 of Merge more symbolic meta kernels and symint changes from branch (#86334) (#86488)"
This reverts commit 978b46d7c9.

Reverted https://github.com/pytorch/pytorch/pull/86488 on behalf of https://github.com/osalpekar due to Broke executorch builds internally with the following message: RuntimeError: Missing out variant for functional op: aten::split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[] . Make sure you have loaded your custom_ops_generated_lib
2022-10-11 23:39:50 +00:00
PyTorch MergeBot
811b8e012b Revert "min/max support for SymInt/Floats, finish as_strided/scatter/squeeze() backward symint support (#86643)"
This reverts commit 86f914e996.

Reverted https://github.com/pytorch/pytorch/pull/86643 on behalf of https://github.com/osalpekar due to Need to revert this to cleanly revert https://github.com/pytorch/pytorch/pull/86488. This should be safe to re-land later
2022-10-11 23:12:40 +00:00
albanD
86f914e996 min/max support for SymInt/Floats, finish as_strided/scatter/squeeze() backward symint support (#86643)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86643
Approved by: https://github.com/anjali411
2022-10-11 17:37:30 +00:00
albanD
978b46d7c9 Reland 2 of Merge more symbolic meta kernels and symint changes from branch (#86334) (#86488)
symintify split_with_sizes, dropout, fused_fake_obs_quant. meta for padding_2d ops

add meta_bernoulli_

meta kernel for at::gather

get pytorch_struct to pass: meta for scatter_add, fix backward

symintify split ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86488
Approved by: https://github.com/ezyang
2022-10-10 15:54:28 +00:00
albanD
55663b7f81 Reland 3 of Symintify getitem and add the required helper functions (#86207) (#86487)
Note that this might not cover every use of the function (we know it doesn't)
But this is enough to get few models passing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86487
Approved by: https://github.com/ezyang
2022-10-10 15:54:28 +00:00
Edward Z. Yang
33f0e98a49 Re-land*4 "SymIntify cat and narrow" (#86468)
This re-lands https://github.com/pytorch/pytorch/pull/86289 but with more wrappers.

Contains implicit inclusion of <ATen/native/NonSymbolicBC.h> in internal usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86468
Approved by: https://github.com/albanD
2022-10-08 07:17:37 +00:00
PyTorch MergeBot
65b408074f Revert "Relandx3 "SymIntify cat and narrow" (#86289)"
This reverts commit a00f8489df.

Reverted https://github.com/pytorch/pytorch/pull/86289 on behalf of https://github.com/malfet due to @seemether  unlanded the rest of the stack and it will fail intern import anyway
2022-10-07 16:29:27 +00:00
PyTorch MergeBot
5b69b87d5a Revert "Symintify getitem and add the required helper functions (#86207)"
This reverts commit fd5085c445.

Reverted https://github.com/pytorch/pytorch/pull/86207 on behalf of https://github.com/seemethere due to  Fails internal tests, see: https://www.internalfb.com/intern/sandcastle/job/22517998926071860/insights
2022-10-07 16:10:30 +00:00
PyTorch MergeBot
75df4b5e3d Revert "Merge more symbolic meta kernels and symint changes from branch (#86334)"
This reverts commit 08e3999fa4.

Reverted https://github.com/pytorch/pytorch/pull/86334 on behalf of https://github.com/seemethere due to Trying to revert https://github.com/pytorch/pytorch/pull/86207, this PR causes merge conflicts with the initial revert so will have to revert this as well
2022-10-07 16:03:30 +00:00
Edward Z. Yang
a00f8489df Relandx3 "SymIntify cat and narrow" (#86289)
This reverts commit fc94a2115b.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86289
Approved by: https://github.com/wconstab
2022-10-07 14:04:10 +00:00
PyTorch MergeBot
2110c89443 Revert "Revert "Revert "SymIntify cat and narrow (#86191)"" (#86289)"
This reverts commit e778fbf519.

Reverted https://github.com/pytorch/pytorch/pull/86289 on behalf of https://github.com/seemethere due to Fails internal tests see: https://www.internalfb.com/intern/sandcastle/job/27021598552487548/
2022-10-07 05:20:36 +00:00
Brian Hirsh
08e3999fa4 Merge more symbolic meta kernels and symint changes from branch (#86334)
symintify split_with_sizes, dropout, fused_fake_obs_quant. meta for padding_2d ops

add meta_bernoulli_

meta kernel for at::gather

get pytorch_struct to pass: meta for scatter_add, fix backward

symintify split ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86334
Approved by: https://github.com/ezyang
2022-10-06 23:29:04 +00:00
Huy Do
795906f207 Add total GPU memory utilization (#86250)
Although we already have per process GPU memory usage, I'm curious to see what is the number for `gpu_utilization.memory` per https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilization__t.html.  Also fixing a tiny typo issue that has been bugging me for a while `total_gpu_utilizaiton`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86250
Approved by: https://github.com/ZainRizvi
2022-10-06 18:53:59 +00:00
Sahan Paliskara
936e93058b Delete torch::deploy from pytorch core (#85953)
As we have migrated torch::deploy over to https://github.com/pytorch/multipy, we can now delete it from pytorch core as ongoing development will happen there.

This PR was created due to syncing issues with https://github.com/pytorch/pytorch/pull/85443 which is where the review history can be found.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85953
Approved by: https://github.com/seemethere, https://github.com/malfet
2022-10-06 07:20:16 +00:00
albanD
fd5085c445 Symintify getitem and add the required helper functions (#86207)
Note that this might not cover every use of the function (we know it doesn't)
But this is enough to get few models passing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86207
Approved by: https://github.com/ezyang, https://github.com/Chillee, https://github.com/bdhirsh
2022-10-06 04:46:19 +00:00
PyTorch MergeBot
168ba066e3 Revert "Symintify getitem and add the required helper functions (#86207)"
This reverts commit 17addb307e.

Reverted https://github.com/pytorch/pytorch/pull/86207 on behalf of https://github.com/malfet due to Broke lint, by double-registering `meta_index_put`, but no CI was run during the outage
2022-10-05 22:42:56 +00:00
albanD
17addb307e Symintify getitem and add the required helper functions (#86207)
Note that this might not cover every use of the function (we know it doesn't)
But this is enough to get few models passing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86207
Approved by: https://github.com/ezyang
2022-10-05 21:19:00 +00:00
albanD
b8895df8db Fix black binary again for debug python (#86275)
The `--no-binary` flag was not ported when moving from black only to ufmt.
This adds it back.

This is to work around the fact that black binary hard crashes when running with debug python and it needs to be compiled from source.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86275
Approved by: https://github.com/bdhirsh, https://github.com/malfet
2022-10-05 21:08:40 +00:00
Edward Z. Yang
e778fbf519 Revert "Revert "SymIntify cat and narrow (#86191)"" (#86289)
This reverts commit fc94a2115b.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86289
Approved by: https://github.com/wconstab
2022-10-05 20:51:28 +00:00
PyTorch MergeBot
fc94a2115b Revert "SymIntify cat and narrow (#86191)"
This reverts commit 63d8d4f6ec.

Reverted https://github.com/pytorch/pytorch/pull/86191 on behalf of https://github.com/seemethere due to Fails internal tests, see [D40106464](https://www.internalfb.com/diff/D40106464)
2022-10-05 17:19:55 +00:00
Will Constable
63d8d4f6ec SymIntify cat and narrow (#86191)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86191
Approved by: https://github.com/ezyang
2022-10-05 14:46:55 +00:00
lezcano
c609768896 Add refs for torch.unfold and a decomposition for its backward. (#85629)
It's not clear to me what's the difference between `unfold` and `unfold_copy`, as this latter one is codegen'd

I also took this chance to clean the implementation of unfold and its reference
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85629
Approved by: https://github.com/mruberry
2022-10-05 12:15:49 +00:00
Philip Meier
9d6109c4b0 improve annotations (#86105)
In `torchvision` we started to use tensor subclasses. With the current annotations, this minimal example throws three errors when checking with `mypy`:

```py
from typing import Type, TypeVar, Any, Optional, Union

import torch

T = TypeVar("T", bound="TensorSubclass")

class TensorSubclass(torch.Tensor):
    def __new__(
        cls: Type[T],
        data: Any,
        *,
        dtype: Optional[torch.dtype] = None,
        device: Optional[Union[torch.device, str, int]] = None,
    ) -> T:
        return torch.as_tensor(data, dtype=dtype, device=device).as_subclass(cls)
```

```
main.py:16:16: error: Incompatible return value type (got "Tensor", expected "T")  [return-value]
main.py:16:58: error: Argument "device" to "as_tensor" has incompatible type "Union[device, str, int, None]"; expected "Optional[device]"  [arg-type]
main.py:16:78: error: Argument 1 to "as_subclass" of "_TensorBase" has incompatible type "Type[T]"; expected "Tensor"  [arg-type]
```

I'll explain inline why the old annotations are wrong.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86105
Approved by: https://github.com/albanD
2022-10-05 10:33:26 +00:00
Edward Z. Yang
2aa9e0750a Symintified all functions, not including factory functions (#86078)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86078
Approved by: https://github.com/Chillee, https://github.com/albanD
2022-10-03 20:12:32 +00:00
Catherine Lee
7941b042a7 parallelize at file granularity (#85770)
part two of https://github.com/pytorch/pytorch/pull/84961

tests files in parallel at the test file granularity

* 2 procs at a time
* number of tests ran changed by <200, possibly due to adding more tests on master between the base commit and head commit of the PR
* may cause flakiness, but I haven't seen it in my small sample size of this PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85770
Approved by: https://github.com/huydhn
2022-10-03 16:59:39 +00:00
Edward Z. Yang
bd32f9a833 Correct ownership of OptionalSymIntArrayRef in backwards (#86087)
Also add some cheap but cheerful sanity checks to help detect
similar situations in the future.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86087
Approved by: https://github.com/albanD
2022-10-03 13:52:26 +00:00
lezcano
07ce0b435b Remove backward for im2col and col2im (#85542)
`im2col` is a linear map, and `col2im` is its adjoint. As such, the
adjoint to `col2im` is `im2col` (the adjoint of the adjoint is the
original function.

There's no point having explicit derivatives in ATen for these
functions, so this PR deletes all these.

Furthermore, along the way, we fix an error for the derivative of im2col
for non-batched inputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85542
Approved by: https://github.com/soulitzer, https://github.com/ngimel
2022-10-03 00:16:42 +00:00
Edward Z. Yang
3638089755 Ported reshape to symints and added a shim for BC (#85998)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85998
Approved by: https://github.com/ezyang
2022-10-02 17:46:00 +00:00
Edward Z. Yang
2f703c5956 SymInt-ify TypeAndSize (#86044)
Commit originally by anjali411, with bugfix from Edward.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86044
Approved by: https://github.com/Chillee
2022-10-01 13:57:59 +00:00
Edward Z. Yang
3b6588ab74 Consistent compute numel/contiguous strategy with SymInts (#85858)
Previously, our handling for contiguity was inconsistent in the following ways:

- is_strides_like 2d/3d and is_non_overlapping_and_dense always were computed
  based on sizes_and_strides_, even if you had symbolic ints
- Furthermore, even if you set custom policy for strides, these quantities were
  not overridable by subclasses
- Furthermore, we didn't even store these fields on ExtraMeta
- We duplicate implementations of compute_contiguous (plain, channels last,
  channels last 3d)
- We inconsistently called refresh_numel()/refresh_contiguous(), versus
  recomputing it ourselves

This factor makes a consistent strategy for all of the boolean fields, and
for numel computation.  After this refactor:

- All layout boolean fields are interposable via strides policy
  and can be overridden from Python; you will never access a garbage field
- All layout boolean fields are on ExtraMeta
- You can always call refresh_numel/contiguous, no matter if your Tensor is
  contiguous or not
- The numel/layout boolean fields are always populated consistently with
  the sizes strides fields (either on Tensor or ExtraMeta), even if you
  have custom policy
- There is only one implementation of the actual computation logic

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39907696](https://our.internmc.facebook.com/intern/diff/D39907696)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85858
Approved by: https://github.com/albanD
2022-09-30 21:26:34 +00:00
Edward Z. Yang
84a06d7193 Enable convolution_backward with bias and symints (#85970)
Originally by Krovatkin from https://github.com/pytorch/pytorch/pull/85816

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85970
Approved by: https://github.com/albanD
2022-09-30 21:21:11 +00:00
BowenBao
8f4edf1e1d [ONNX] Initial version of diagnostics infrastructure. (#85107)
This PR introduces a general Python diagnostics infrastructure powered by SARIF,
and the exporter diagnostics module that builds on top of it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85107
Approved by: https://github.com/abock, https://github.com/justinchuby
2022-09-30 07:47:26 +00:00
BowenBao
33401ee81f [ONNX] Rename 'sarif_om' to 'sarif' (#85918)
'sarif_om' was the module name in the original repository https://github.com/microsoft/sarif-python-om.
But since we have moved along with various extensions, it wouldn't hurt to rename the module for clarity.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85918
Approved by: https://github.com/abock, https://github.com/thiagocrepaldi, https://github.com/justinchuby
2022-09-30 05:39:49 +00:00
BowenBao
e9b254a025 [ONNX] Migrate SARIF from attr to dataclasses (#85651)
Move to dataclasses since PyTorch does not depend on `attr`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85651
Approved by: https://github.com/justinchuby, https://github.com/AllenTiTaiWang, https://github.com/abock, https://github.com/thiagocrepaldi
2022-09-30 05:34:40 +00:00
BowenBao
91667d1d21 [ONNX] Introduce SARIF (#85428)
That's the parent issue tracking this and more follow up tasks, so will keep open after this.
This PR introduces the python classes for SARIF object model, along with script for generation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85428
Approved by: https://github.com/justinchuby, https://github.com/AllenTiTaiWang, https://github.com/abock, https://github.com/thiagocrepaldi
2022-09-30 05:32:41 +00:00
soulitzer
7e4684009c Improve codegen for jvp decomposition (#84894)
Fixes: https://github.com/pytorch/pytorch/issues/84888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84894
Approved by: https://github.com/albanD
2022-09-29 03:04:15 +00:00
soulitzer
bd65adf4e9 Properly fix log_sigmoid vmapjvp and remove hack (#84892)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84892
Approved by: https://github.com/albanD, https://github.com/zou3519
2022-09-29 01:19:13 +00:00
Mikayla Gawarecki
afaee00fec Add python nested_tensor and as_nested_tensor constructors in torch.nested (#85593)
Remove `torch.nested_tensor` which has erroneous behavior wrt gradients (could be either leaf or not leaf). Introduce `torch.nested.nested_tensor` and `torch.nested.as_nested_tensor` in the vein of `torch.tensor` and `torch.as_tensor`. Done in nested `__init__.py` for now but can move to pybind in future (when we want to load from numpy/nested lists ).

Discussed offline with @cpuhrsch and pybind constructor (https://github.com/pytorch/pytorch/pull/85536) was more gnarly than expected, so we can move to that when we do need loading from numpy etc.

Differential Revision: [D39806622](https://our.internmc.facebook.com/intern/diff/D39806622)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85593
Approved by: https://github.com/drisspg, https://github.com/cpuhrsch
2022-09-28 20:15:02 +00:00
Horace He
a4bd89b267 Revert "Revert "Symintified mmm/addmm derivative formulas (#85794)"" (#85820)
This reverts commit 823dc33b00.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85820
Approved by: https://github.com/huydhn
2022-09-28 17:34:11 +00:00
PyTorch MergeBot
a0b1693996 Revert "Update amax/amin/norm/count_nonzero signatures with int[*]? dim (#83300)"
This reverts commit 1c0f0b33a0.

Reverted https://github.com/pytorch/pytorch/pull/83300 on behalf of https://github.com/jeffdaily due to The commit breaks nvfuser tests
2022-09-28 17:04:53 +00:00
PyTorch MergeBot
823dc33b00 Revert "Symintified mmm/addmm derivative formulas (#85794)"
This reverts commit 230edd2515.

Reverted https://github.com/pytorch/pytorch/pull/85794 on behalf of https://github.com/janeyx99 due to Sorry, reverting as this breaks an aot_autograd mac test on functorch 230edd2515
2022-09-28 16:02:05 +00:00
Horace He
230edd2515 Symintified mmm/addmm derivative formulas (#85794)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85794
Approved by: https://github.com/ezyang
2022-09-28 14:07:57 +00:00
Edward Z. Yang
793488cda2 Revert "Revert "Symintifying slice ops (#85196)"" (#85746)
This reverts commit 3a171dfb0c.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85746
Approved by: https://github.com/albanD
2022-09-28 04:37:35 +00:00
Kurt Mohler
1c0f0b33a0 Update amax/amin/norm/count_nonzero signatures with int[*]? dim (#83300)
Changes `dim` arg to use `int[*]?` type for the following functions in `native_funcitons.yaml`:
* `amax`
* `amin`
* `norm`
* `frobenius_norm`
* `native_norm`
* `count_nonzero`

Part of #29137

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83300
Approved by: https://github.com/ngimel, https://github.com/albanD, https://github.com/kulinseth
2022-09-28 01:56:37 +00:00
PyTorch MergeBot
572dd862c4 Revert "Update amax/amin/norm/count_nonzero signatures with int[*]? dim (#83300)"
This reverts commit 8c7c7ed322.

Reverted https://github.com/pytorch/pytorch/pull/83300 on behalf of https://github.com/huydhn due to The commit pin breaks XLA test somehow
2022-09-28 01:36:43 +00:00
Kurt Mohler
8c7c7ed322 Update amax/amin/norm/count_nonzero signatures with int[*]? dim (#83300)
Changes `dim` arg to use `int[*]?` type for the following functions in `native_funcitons.yaml`:
* `amax`
* `amin`
* `norm`
* `frobenius_norm`
* `native_norm`
* `count_nonzero`

Part of #29137

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83300
Approved by: https://github.com/ngimel, https://github.com/albanD, https://github.com/kulinseth
2022-09-27 23:50:04 +00:00
PyTorch MergeBot
3a171dfb0c Revert "Symintifying slice ops (#85196)"
This reverts commit 4c01c51266.

Reverted https://github.com/pytorch/pytorch/pull/85196 on behalf of https://github.com/atalman due to Break internal build Exutorch
2022-09-27 18:01:27 +00:00
soulitzer
15c52ffc4f Disallow auto_element_wise for in-place and fix some in-place gradients (#85634)
Fixes https://github.com/pytorch/pytorch/issues/85535

Also fixes the backward and forward gradients of `nn.functional.threshold`. The issue was that in-place gradients weren't tested because the in-place variants were not properly registered to the OpInfo.

Perhaps an alternative to this to make auto_element_wise smart enough to actually handle the in-places cases (we have 4 cases total now where we manually copy_ after doing auto_element_wise), but that requires a few more changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85634
Approved by: https://github.com/albanD
2022-09-27 15:35:24 +00:00
George Qi
686555b663 [maskedtensor] port torch/_masked into torch/masked (#85515)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85515
Approved by: https://github.com/cpuhrsch
2022-09-26 23:41:13 +00:00
Brian Hirsh
4a2d2e5e40 Change API type Tensor[] for structured kernels. (#73350)
Partially fixes: #66328

This PR:
- adds support for `ITensorList` to the dispatcher for:
  - computing the dispatch key
  - boxing and unboxing `ITensorList`
- modified the codegen for structured kernels:
  - codegen APIs use `ITensorList` instead of `ArrayRef<Tensor>`

**Changes summary:**

- Signature changes due to the different APIs:
  - dispatcher API (e.g. `BatchingRegistrations.cpp`)
  - C++ API (e.g. `TensorShape.cpp`)
- Miscelaneous functions used by codegen'd functions (e.g. `FunctionalTensorWrapper.*`)
- Dispatcher changes for handling `ITensorList` correctly (e.g. `DispatchKeyExtractor.h`)
- Signature changes of `at::cat` due to the need of `const` inside `TensorBody.h`
- Forward declarations of `ITensorList` (e.g. `MethodOperators.h`)
- Codegen changes, special casing structured kernels (e.g. `gen.py`)

**Short description of structured kernels special casing:**

I introduced, mainly, 5 types of changes to the codegen for generating code depending on
whether the kernel is structured or not:

1. Added a `structured_type_override` flag to the `argument_type` function definition of
the affected APIs (mainly the dispatcher and C++ APIs).
  - `api/cpp.py`, `api/dispatcher.py`, `api/native.py`
2. Added a `structured_type_override` member to the signature
classes (e.g. `CppSignature`), since `FunctionSchema` doesn't really know whether the
function is structured or not
  - `api/types.py`
3. Added a `part_of_structured_group` to `NativeFunction` class, which is just a
convenient function to forward to `structured_type_override` wherever needed
  - `model.py`
4. Appropriately changed the rest of the codegen, whenever it used either the signature
classes or the `arguments` function directly
5. Added a check for `const ITensorList&` type wherever there was a check for `TensorList`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73350
Approved by: https://github.com/bdhirsh
2022-09-26 21:46:38 +00:00
Edward Z. Yang
4c01c51266 Symintifying slice ops (#85196)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85196
Approved by: https://github.com/ezyang
2022-09-23 22:01:32 +00:00
Catherine Lee
49e10c1598 [ci] test_ops in parallel, ci tests log to file (#85528)
part one of splitting up https://github.com/pytorch/pytorch/pull/84961 into (probably 2) parts

contains
* logging to file
* testing test_ops in parallel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85528
Approved by: https://github.com/huydhn
2022-09-23 20:45:20 +00:00
Ivan Yashchuk
539076e2c2 Remove deprecated torch.lstsq (#70980)
The time has come to remove deprecated linear algebra related functions. This PR removes `torch.lstsq`.

There's a note in `tools/codegen/gen.py` about `lstsq` schema in `native_function.yaml` that I will not remove:
87139d8532/tools/codegen/gen.py (L734-L770)

cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70980
Approved by: https://github.com/lezcano, https://github.com/kit1980
2022-09-23 00:16:55 +00:00
Richard Zou
848437590f Delete functorch's monkeypatching (#85430)
By upstreaming functorch's tensor printing logic into PyTorch. There's
no way of creating a custom print function for a TensorImpl subclass (as
opposed to a torch_dispatch or torch_function tensor subclass, which can
just override repr()) right now, so we need to directly interpose inside
regular Tensor printing in PyTorch.

Monkey patching is bad; users do not expect `import blah` to change
something about another library.

Fixes https://github.com/pytorch/functorch/issues/900

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85430
Approved by: https://github.com/ezyang
2022-09-22 18:47:12 +00:00
kshitij12345
56a41b5998 [composite compliance] ctc_loss (#84752)
#Ref #69991

I have mixed feelings about adding new (private) operators. Backends writers will have to override them as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84752
Approved by: https://github.com/zou3519
2022-09-22 00:21:11 +00:00
PyTorch MergeBot
3dce26635f Revert "test in parallel at file granularity (#84961)"
This reverts commit 8107666c6a.

Reverted https://github.com/pytorch/pytorch/pull/84961 on behalf of https://github.com/clee2000 due to makes test_forward_ad_nn_functional_max_unpool2d_cuda_float32 flakily unexpectedly pass
2022-09-21 20:21:25 +00:00
Mikayla Gawarecki
77f1f98479 Re-introduce torch.Tensor.to_padded_tensor (#85293)
Differential Revision: [D39629004](https://our.internmc.facebook.com/intern/diff/D39629004)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85293
Approved by: https://github.com/cpuhrsch
2022-09-21 18:45:56 +00:00
Catherine Lee
8107666c6a test in parallel at file granularity (#84961)
run tests in parallel at the test file granularity

runs 3 files in parallel using multiprocessing pool, output goes to a file, which is then printed when the test finishes.  Some tests cannot be run in parallel (usually due to lacking memory), so we run those after.  Sharding is changed to attempt to mask large files with other large files/run them on the same shard.

test_ops* gets a custom handler to run it because it is simply too big (2hrs on windows) and linalg_cholesky fails (I would really like a solution to this if possible, but until then we use the custom handler).

reduces cuda tests by a lot, reduces total windows test time by ~1hr

Ref. https://github.com/pytorch/pytorch/issues/82894
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84961
Approved by: https://github.com/huydhn
2022-09-21 16:58:11 +00:00
Edward Z. Yang
3eb27229dd as_strided symbolic support (#85264)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39662820](https://our.internmc.facebook.com/intern/diff/D39662820)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85264
Approved by: https://github.com/wconstab
2022-09-21 13:34:55 +00:00
Edward Z. Yang
e1f634753c Setup fake tensor and symbolic shapes once at beginning of AOTAutograd (#85233)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39662822](https://our.internmc.facebook.com/intern/diff/D39662822)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85233
Approved by: https://github.com/wconstab
2022-09-20 19:11:25 +00:00
Thomas Viehmann
e41d758e26 Handle implicit real->complex casting for backward of stack (#84993)
Fixes: #75852

P.S.: Yay for the PyTorch foundation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84993
Approved by: https://github.com/soulitzer
2022-09-19 21:20:34 +00:00
Edward Z. Yang
6a18616296 Support for sym_strides() in backwards formulas (#85210)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85210
Approved by: https://github.com/Chillee, https://github.com/voznesenskym
2022-09-19 18:05:09 +00:00
Brian Hirsh
1838957e6f fix external codegen kernel error checking (#85029)
Fixes https://github.com/pytorch/pytorch/issues/84987. I followed the repro steps from the issue (changed `empty_symint` to `empty_symint2` and confirmed that and error gets raised.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85029
Approved by: https://github.com/ezyang
2022-09-17 04:08:09 +00:00
Edward Z. Yang
490727a35f New calling convention for Python dispatcher (#85133)
Instead of calling into the Python dispatcher for EVERY dispatcher
call, we now have a two step process.  First, we
getattr(op: OpOverload, dispatch_key) to "load" the handler for the
function.  This can either be a conventional function (in which
case we will call it, in the same way the old Python dispatcher
worked), or it can be a DispatchKey, in which case we will directly
call that DispatchKey in C++, bypassing marshalling between Python
and C++ entirely.  OpOverload.__getattr__ is carefully written so
that it will cache the

A further optimization would be to define __slots__ on OpOverload,
and ensuring that the DispatchKey strings are interned.

The resulting Python dispatcher is less flexible: after the first
lookup, the handler is cached and we won't recompute it.  Furthermore,
by default, dispatches will not go into Python, and so you won't
get stack frames for the Python dispatcher by default.  But we get
a huge performance improvement: on the following microbenchmark
we go from 2.5s to 1.9s.

```
import time
import torch
from functorch import make_fx

def f(x):
    for i in range(1000):
        x = x * x
    return x

begin = time.time()
res = make_fx(f, tracing_mode="symbolic")(torch.randn(10, 20))
print(time.time()-begin)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85133
Approved by: https://github.com/wconstab
2022-09-16 20:38:21 +00:00
lezcano
d710c95cc0 Implement forward AD for scatter_reduce (#85000)
I left the case `reduction="prod"` for future work as it's a bit of a pain.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85000
Approved by: https://github.com/soulitzer
2022-09-16 17:45:07 +00:00
Edward Z. Yang
00ce302c07 Performance optimizations to proxy tensor (#85049)
- Lazily allocate FX nodes for size/stride accessors on proxy tensor
- Properly track derived computations on strides/numel/etc
- Remove unnecessary tree_map at end of proxy tensor trace checking
  invariants; we will just have to be smart (it's too expensive)
- Avoid tree_map in sym proxy tracing

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85049
Approved by: https://github.com/wconstab
2022-09-16 00:28:50 +00:00
soulitzer
7f88934a8f [reland 2] Call jit decomp in VariableType to improve forward AD coverage (#84976)
Reland of https://github.com/pytorch/pytorch/pull/84675
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84976
Approved by: https://github.com/zou3519
2022-09-15 22:46:19 +00:00
Michael Voznesensky
8ca1839d32 Python Dispatcher integration with C++ dispatcher (#85050)
#84826 but without ghstack
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85050
Approved by: https://github.com/malfet
2022-09-15 00:43:36 +00:00
PyTorch MergeBot
706b990306 Revert "Python Dispatcher integration with C++ dispatcher (#84826)"
This reverts commit 35f6a69191.

Reverted https://github.com/pytorch/pytorch/pull/84826 on behalf of https://github.com/malfet due to Broke dynamo, see 35f6a69191
2022-09-14 14:07:58 +00:00
Michael Voznesensky
35f6a69191 Python Dispatcher integration with C++ dispatcher (#84826)
Signed-off-by: Edward Z. Yang <ezyangfb.com>

From @ezyang's original PR:

There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:

We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.

I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
2022-09-14 06:57:19 +00:00
PyTorch MergeBot
36d79143ce Revert "[reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)"
This reverts commit bb4e96c964.

Reverted https://github.com/pytorch/pytorch/pull/84675 on behalf of https://github.com/osalpekar due to causing asan xplat link-time errors like ld.lld: error: undefined symbol: torch::jit::has_jit_decomposition(c10::FunctionSchema const&)
2022-09-13 22:54:54 +00:00
drisspg
bda8a5729b [Nested Tensor] Create differentiable nt to tensor view functions (#83371)
This PR attempts to implements 2) "the safe way" of creating a view of nested tensor that returns a regular tensor. The rest of the break down is here: https://fb.quip.com/J8QCAx41af11

https://gist.github.com/drisspg/8622e9c97d374fa920ac647e1167cabc
This is a short list of some edge cases. After some more work I was able to address two of the test cases in the above gist. There are few complex aspects here that I left defeated comments inline.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83371
Approved by: https://github.com/bdhirsh
2022-09-13 20:35:58 +00:00
Thomas Orozco
b4799736ee autograd: fix non-deterministic output in codegen comments (#84695)
Summary:
Like it says in the title. Currently, this will return output like this:

In Buck1, that's OK because Buck1's caching doesn't really care too much about

However, in Buck2, this is a disaster, because caching is based exclusively
on inputs and outputs and

The diff here proposes making the path relative to the codegen script itself,
which should carry about as much info, but avoid cache misses.

Concretely, this:

```
// generated from /dev/shm/uid-34135/cfbc5712-seed-nspid4026533424_cgpid2794673-ns-4026533443/tools/autograd/templates/python_functions.h
```

Becomes, this:

```
// generated from ../tools/autograd/templates/python_functions.h
```

So, we keep the useful part, and we get caching. This matters because those
headers are used in actions like:

```
fbcode//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops -- action (cxx_compile gen_embedding_backward_adam_split_unweighted_cuda.cu (pic))
```

Those actions take upwards of 5 minutes to finish, so by allowing a cache hit,
we are a) saving our users a lot of time and b) saving some RE capacity as
well.

This actually matters a lot because right now those targets are produced by
`//caffe2:generate-code`, which itself doesn't get cache hits from RE because
`generate_code.par` is non-deterministic (this is, unfortunately, true of PARs
in general), so that rule introduces non-determinism that the codegen
propagates and we get zero caching.

This diff doesn't fix `//caffe2:generate-code`'s  inputs being
non-deterministic, but it does fix its *outputs* being non-deterministic, which
means the non-determinism stops there, and we get back to cache hits.

Test Plan:
- CI

```
buck2 build fbcode//caffe2:generate-code
buck2 build fbcode//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops
```

Reviewed By: ndmitchell

Differential Revision: D39348565

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84695
Approved by: https://github.com/soulitzer
2022-09-13 18:41:15 +00:00
soulitzer
bb4e96c964 [reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)
This reverts commit acb4a09628.

In addition, we also fix a memory leak in layer norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84675
Approved by: https://github.com/zou3519
2022-09-12 20:33:14 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
Mengwei Liu
2765243cd5 [torchgen] Refactor static_dispatch to take in source signature (#84384)
Summary: Context: currently `static_dispatch` assumes that given a native function `f`, we always want to map from its `DispatchSignature` to its `CppSignature`. This assumption may not hold true for some use cases, where the source bindings may not come from its `DispatchSignature`. Here I'm changing the argument `sig: DispatcherSignature` to be `sig: Union[CppSignature, DispatcherSignature]`, also removes unused `f`

Test Plan: Rely on added unit test.

Differential Revision: D39192969

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84384
Approved by: https://github.com/iseeyuan
2022-09-10 06:58:56 +00:00
Ivan Yashchuk
01c54ad6de Remove deprecated torch.eig (#70982)
The time has come to remove deprecated linear algebra related functions. This PR removes `torch.eig`.

cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70982
Approved by: https://github.com/Lezcano, https://github.com/malfet
2022-09-09 21:31:57 +00:00
Eli Uriegas
93aef3a010 Use presence of _symint in kernel name to generate symint sig or not (#84579)
Something people found confusing was that whether or not a native::
signature would get SymInt or not in its type was based on the dispatch
key.  This changes it so that SymInt or not in type is based on whether
or not you have _symint in the name of the kernel or not.  This means
that even when we make operators support SymInt, you no longer have to
go and update all the preexisting definitions; instead, you now
selectively write _symint to opt individual kernels into SymInt support.

I then go and update a bunch of kernels that don't have proper SymInt
support to make use of this convention.  There is some hacking around
for view generation code.

I also add support for external backends to specify 'symint' operators, for which we generate SymInt signatures instead of regular signatures.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39310060](https://our.internmc.facebook.com/intern/diff/D39310060)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84579
Approved by: https://github.com/wconstab
2022-09-09 18:31:56 +00:00
Dhruv Matani
18a31cc044 [Mobile] Fix The Build For Model Tracer (#84755)
Summary: Currently, the model tracer build is broken because of 2 reasons:
1. A few source files are missing, resulting in missing link time symbols
2. The `TRACING_BASED` flag isn't passed correctly from the command line (specified as an evnironment variable) as a CMake flag

Both these issues were fixed.

Test Plan: Ran this command: `USE_CUDA=0 TRACING_BASED=1 python setup.py develop --cmake`

and saw that the tracer binary was built at `build/bin/model_tracer` - also ran it to ensure that it can generate a YAML file.

Differential Revision: [D39391270](https://our.internmc.facebook.com/intern/diff/D39391270)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84755
Approved by: https://github.com/cccclai
2022-09-09 18:22:24 +00:00
Justin Chu
2fa8142cf9 [ONNX] Rename constants for clarity (#84645)
Rename constants to make them more clear. Fix styles to upper case.

Removed `onnx_stable_opsets` because it can be computed from `ONNX_MIN_OPSET` and `ONNX_MAX_OPSET`.

Fixes #84643

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84645
Approved by: https://github.com/BowenBao
2022-09-09 01:22:14 +00:00
PyTorch MergeBot
acb4a09628 Revert "Call jit decomposition in VariableType to increase forward AD coverage (#84151)"
This reverts commit 42d99e6f19.

Reverted https://github.com/pytorch/pytorch/pull/84151 on behalf of https://github.com/malfet due to Regressed test_jvpvjp_nn_functional_layer_norm_cuda_float32, see 42d99e6f19
2022-09-07 18:02:27 +00:00