**Motivation**
When adding support for default args (#90575), a lot of VariableTrackers missing sources were encountered. Currently, in a lot of cases it seems OK to skip the source for VariableTrackers created (especially during inlining), but that assumption breaks down when inlining functions with default arguments.
**Summary** of changes
- propagate the self.source of the VariableBuilder to the new variables being built, which seems like it was an omission previously
- Add SuperSource to track usages of super(), so that SuperVariables can support function calls with default args
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91729
Approved by: https://github.com/ezyang
This PR adds `@comptime`, a decorator that causes a given function to be executed at compile time when Dynamo is symbolically evaluating their program. To query the Dynamo state, we offer a public ComptimeContext API which provides a limited set of APIs for querying Dynamo's internal state. We intend for users to use this API and plan to keep it stable. Here are some things you can do with it:
* You want to breakpoint Dynamo compilation when it starts processing a particular line of user code: give comptime a function that calls breakpoint
* You want to manually induce a graph break for testing purposes; give comptime a function that calls unimplemented
* You want to perform a debug print, but you don't want to induce a graph break; give comptime a function that prints.
* You can print what the symbolic locals at a given point in time are.
* You can print out the partial graph the Dynamo had traced at this point.
* (My original motivating use case.) You want to add some facts to the shape env, so that a guard evaluation on an unbacked SymInt doesn't error with data-dependent. Even if you don't know what the final user API for this should be, with comptime you can hack out something quick and dirty. (This is not in this PR, as it depends on some other in flight PRs.)
Check out the tests to see examples of comptime in action.
In short, comptime is a very powerful debugging tool that lets you drop into Dynamo from user code, without having to manually jerry-rig pdb inside Dynamo to trigger after N calls.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90983
Approved by: https://github.com/jansel
copy_graphstate is called a ton, this makes copy_graphstate a lot faster, helps with https://github.com/pytorch/torchdynamo/issues/1803
tag each graph node with a timestamp, when checkpointing store the timestamp, when restoring remove nodes older than the timestamp stored in the state. This essentially has the same behavior as the original impl, just doesn't copy the whole graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89232
Approved by: https://github.com/jansel
Make mutation faster to speed up tracing optimizers, helps with https://github.com/pytorch/torchdynamo/issues/1803
`replace_all` no longer iterates over the entire variable tracker data structure every time a mutation is performed
Each variable tracker internally keeps a set of contained mutable variable trackers, to provide a hint to `replace_all`. This is populated with a call to `apply` from `__post_init__` in the base `VariableTracker`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89170
Approved by: https://github.com/jansel