mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Migration from https://github.com/pytorch/torchdynamo/pull/1655. Pull Request resolved: https://github.com/pytorch/pytorch/pull/87136 Approved by: https://github.com/voznesenskym
673 lines
23 KiB
Python
673 lines
23 KiB
Python
import inspect
|
|
import sys
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
import torch._C
|
|
|
|
from .. import config, variables
|
|
from ..bytecode_transformation import create_instruction
|
|
from ..exc import unimplemented
|
|
from ..guards import Guard, GuardBuilder, GuardSource
|
|
from ..source import AttrSource
|
|
from ..utils import identity, proxy_args_kwargs
|
|
from .base import VariableTracker
|
|
from .functions import (
|
|
UserFunctionVariable,
|
|
UserMethodVariable,
|
|
WrappedUserFunctionVariable,
|
|
WrappedUserMethodVariable,
|
|
)
|
|
|
|
|
|
class SuperVariable(VariableTracker):
|
|
def __init__(self, typevar, objvar=None, **kwargs):
|
|
super(SuperVariable, self).__init__(**kwargs)
|
|
self.typevar = typevar
|
|
self.objvar = objvar
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen(variables.BuiltinVariable(super))
|
|
codegen(self.typevar)
|
|
if self.objvar is not None:
|
|
codegen(self.objvar)
|
|
return [create_instruction("CALL_FUNCTION", 2)]
|
|
else:
|
|
return [create_instruction("CALL_FUNCTION", 1)]
|
|
|
|
def const_getattr(self, tx, name):
|
|
assert self.objvar, "1-arg super not implemented"
|
|
search_type = self.typevar.as_python_constant()
|
|
|
|
# We default to the python type of the object. However,
|
|
# 1. If this is a `type`, then the original object represents the user
|
|
# defined type.
|
|
# 2. If this is `torch._C._TensorMeta`, the original object is the user
|
|
# defined type of a custom tensor subclass.
|
|
# TODO(future PR): figure out how to do this in a less hacky way
|
|
type_to_use = self.objvar.python_type()
|
|
if type_to_use is type or type_to_use is torch._C._TensorMeta:
|
|
type_to_use = self.objvar.value
|
|
|
|
# TODO(jansel): there is a small chance this could trigger user code, prevent that
|
|
return getattr(super(search_type, type_to_use), name)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
options = VariableTracker.propagate(
|
|
self, args, kwargs.values(), self.objvar, self.typevar
|
|
)
|
|
inner_fn = self.const_getattr(self, name)
|
|
if inner_fn is object.__init__:
|
|
return LambdaVariable(identity, **options)
|
|
elif isinstance(inner_fn, types.FunctionType):
|
|
return variables.UserFunctionVariable(inner_fn, **options).call_function(
|
|
tx, [self.objvar] + args, kwargs
|
|
)
|
|
elif isinstance(inner_fn, types.MethodType):
|
|
return variables.UserMethodVariable(
|
|
inner_fn.__func__, self.objvar, **options
|
|
).call_function(tx, args, kwargs)
|
|
else:
|
|
unimplemented(f"non-function or method super: {inner_fn}")
|
|
|
|
|
|
class UnknownVariable(VariableTracker):
|
|
"""
|
|
It could be anything!
|
|
"""
|
|
|
|
|
|
class ClosureVariable(UnknownVariable):
|
|
def __init__(self, name, **kwargs):
|
|
super(ClosureVariable, self).__init__(**kwargs)
|
|
self.name = name
|
|
|
|
def reconstruct(self, codegen):
|
|
return [codegen.create_load_closure(self.name)]
|
|
|
|
|
|
class NewCellVariable(VariableTracker):
|
|
def __init__(self, **kwargs):
|
|
super(NewCellVariable, self).__init__(**kwargs)
|
|
|
|
|
|
class NewGlobalVariable(VariableTracker):
|
|
def __init__(self, **kwargs):
|
|
super(NewGlobalVariable, self).__init__(**kwargs)
|
|
|
|
|
|
class ContextWrappingVariable(VariableTracker):
|
|
def __init__(self, target_values, initial_values=None, **kwargs):
|
|
super(ContextWrappingVariable, self).__init__(**kwargs)
|
|
self.target_values = target_values
|
|
self.initial_values = initial_values
|
|
|
|
def enter(self, tx):
|
|
self._call_func(tx, self.target_values)
|
|
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
|
|
|
|
def exit(self, tx, *args):
|
|
self._call_func(tx, self.initial_values)
|
|
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
|
|
|
|
def reconstruct(self, codegen, target_inst=None):
|
|
"""
|
|
Generate following Python Bytecode, with a `torch._C._set_grad_enable` call
|
|
Python 3.8
|
|
0 LOAD_GLOBAL 0 (torch)
|
|
2 LOAD_ATTR 1 (_C)
|
|
4 LOAD_METHOD 2 (_set_grad_enable)
|
|
6 LOAD_CONST 1 (False)
|
|
8 CALL_METHOD 1
|
|
10 POP_TOP
|
|
|
|
12 SETUP_FINALLY 10 (to 24)
|
|
|
|
14 LOAD_GLOBAL 3 (user_inst)
|
|
16 CALL_FUNCTION 0
|
|
18 POP_TOP
|
|
20 POP_BLOCK
|
|
22 BEGIN_FINALLY
|
|
|
|
24 LOAD_GLOBAL 0 (torch)
|
|
26 LOAD_ATTR 1 (_C)
|
|
28 LOAD_METHOD 2 (_set_grad_enable)
|
|
30 LOAD_CONST 2 (True)
|
|
32 CALL_METHOD 1
|
|
34 POP_TOP
|
|
36 END_FINALLY
|
|
38 LOAD_CONST 0 (None)
|
|
40 RETURN_VALUE
|
|
|
|
Instructions 0-10 and 24-34 call torch._C.set_grad_enable(True/False)
|
|
|
|
Python 3.9, 3.10
|
|
0 LOAD_GLOBAL 0 (torch)
|
|
2 LOAD_ATTR 1 (_C)
|
|
4 LOAD_METHOD 2 (_set_grad_enable)
|
|
6 LOAD_CONST 1 (False)
|
|
8 CALL_METHOD 1
|
|
10 POP_TOP
|
|
|
|
12 SETUP_FINALLY 22 (to 36)
|
|
|
|
14 LOAD_GLOBAL 3 (user_inst)
|
|
16 CALL_FUNCTION 0
|
|
18 POP_TOP
|
|
20 POP_BLOCK
|
|
|
|
22 LOAD_GLOBAL 0 (torch)
|
|
24 LOAD_ATTR 1 (_C)
|
|
26 LOAD_METHOD 2 (_set_grad_enable)
|
|
28 LOAD_CONST 2 (True)
|
|
30 CALL_METHOD 1
|
|
32 POP_TOP
|
|
|
|
34 JUMP_FORWARD 14 (to 50)
|
|
|
|
36 LOAD_GLOBAL 0 (torch)
|
|
38 LOAD_ATTR 1 (_C)
|
|
40 LOAD_METHOD 2 (_set_grad_enable)
|
|
42 LOAD_CONST 2 (True)
|
|
44 CALL_METHOD 1
|
|
46 POP_TOP
|
|
48 RERAISE
|
|
|
|
50 LOAD_CONST 0 (None)
|
|
52 RETURN_VALUE
|
|
|
|
"""
|
|
if self.target_values == self.initial_values:
|
|
return ([], [])
|
|
|
|
def set_context_insts(values):
|
|
global_torch_source = codegen.tx.import_source("torch")
|
|
attr_source = AttrSource(global_torch_source, self._func_name())
|
|
load_set_context_enabling_insts = attr_source.reconstruct(codegen)
|
|
|
|
loads = [codegen.create_load_const(val) for val in values]
|
|
|
|
return [
|
|
*load_set_context_enabling_insts,
|
|
*loads,
|
|
create_instruction("CALL_FUNCTION", len(values)),
|
|
create_instruction("POP_TOP"),
|
|
]
|
|
|
|
init_block = set_context_insts(self.target_values)
|
|
finally_block = set_context_insts(self.initial_values)
|
|
setup_final_inst = create_instruction("SETUP_FINALLY", target=finally_block[0])
|
|
prologue = init_block + [setup_final_inst]
|
|
|
|
# Generate the epilogue - starts with 20 POP_BLOCK and ends at 34 POP_TOP
|
|
if sys.version_info < (3, 9):
|
|
# Generate the prologue that ends with setup_finally
|
|
epilogue = [
|
|
create_instruction("POP_BLOCK"),
|
|
codegen.create_begin_finally(),
|
|
*finally_block,
|
|
create_instruction("END_FINALLY"),
|
|
]
|
|
else:
|
|
except_block = set_context_insts(self.initial_values)
|
|
epilogue = [
|
|
create_instruction("POP_BLOCK"),
|
|
*except_block,
|
|
create_instruction("JUMP_FORWARD", target=target_inst),
|
|
*finally_block,
|
|
create_instruction("RERAISE"),
|
|
]
|
|
|
|
return (prologue, epilogue)
|
|
|
|
def _call_func(self, tx, initial_values):
|
|
raise NotImplementedError("_call_func called on base")
|
|
|
|
def _func_name(self):
|
|
raise NotImplementedError("_func_name called on base")
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
assert len(args) == 1
|
|
assert isinstance(args[0], UserMethodVariable) or isinstance(
|
|
args[0], UserFunctionVariable
|
|
)
|
|
|
|
if isinstance(args[0], UserMethodVariable):
|
|
return WrappedUserMethodVariable(args[0], self)
|
|
|
|
if isinstance(args[0], UserFunctionVariable):
|
|
return WrappedUserFunctionVariable(args[0], self)
|
|
|
|
|
|
class GradModeVariable(ContextWrappingVariable):
|
|
"""represents torch.{no_grad,enable_grad,set_grad_mode}()"""
|
|
|
|
_guards_singleton = {Guard("", GuardSource.GLOBAL, GuardBuilder.GRAD_MODE)}
|
|
|
|
@staticmethod
|
|
def create(tx, target_value, **kwargs):
|
|
var = GradModeVariable(
|
|
target_values=[target_value],
|
|
initial_values=[torch.is_grad_enabled()],
|
|
**kwargs,
|
|
)
|
|
var._call_func(tx, [target_value])
|
|
return var
|
|
|
|
def __init__(self, target_values, initial_values=None, **kwargs):
|
|
super(GradModeVariable, self).__init__(
|
|
target_values=target_values, initial_values=initial_values, **kwargs
|
|
)
|
|
self.guards = self.guards | self._guards_singleton
|
|
|
|
def enter(self, tx):
|
|
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
|
|
|
|
def _call_func(self, tx, values):
|
|
assert len(values) == 1
|
|
value = values[0]
|
|
tx.output.graph.create_node(
|
|
"call_function", torch._C._set_grad_enabled, (value,), {}
|
|
),
|
|
torch._C._set_grad_enabled(value)
|
|
|
|
def _func_name(self):
|
|
return "_C._set_grad_enabled"
|
|
|
|
def fn_name(self):
|
|
if self.target_values:
|
|
return "enable_grad"
|
|
else:
|
|
return "no_grad"
|
|
|
|
|
|
class AutocastModeVariable(ContextWrappingVariable):
|
|
@staticmethod
|
|
def create(tx, target_values, kwargs):
|
|
values = target_values
|
|
# device_type : str,
|
|
# dtype : Optional[_dtype] = None,
|
|
# enabled : bool = True,
|
|
# cache_enabled : Optional[bool] = None):cache_enabled
|
|
assert "device_type" in kwargs
|
|
values.append(kwargs["device_type"])
|
|
del kwargs["device_type"]
|
|
|
|
if "dtype" in kwargs:
|
|
values.append(kwargs["dtype"])
|
|
del kwargs["dtype"]
|
|
else:
|
|
values.append(variables.ConstantVariable(None))
|
|
|
|
if "enabled" in kwargs:
|
|
values.append(kwargs["enabled"])
|
|
del kwargs["enabled"]
|
|
else:
|
|
values.append(variables.ConstantVariable(True))
|
|
|
|
if "cache_enabled" in kwargs:
|
|
values.append(kwargs["cache_enabled"])
|
|
del kwargs["cache_enabled"]
|
|
else:
|
|
values.append(variables.ConstantVariable(None))
|
|
|
|
var = AutocastModeVariable(tx, target_values, initial_values=None, **kwargs)
|
|
return var
|
|
|
|
def __init__(self, tx, target_values, initial_values=None, **kwargs):
|
|
super(AutocastModeVariable, self).__init__(
|
|
target_values=target_values, initial_values=initial_values, **kwargs
|
|
)
|
|
self.target_values = [val.as_python_constant() for val in target_values]
|
|
self.mode = None
|
|
|
|
def exit(self, tx, *args):
|
|
tx.output.graph.create_node(
|
|
"call_function", exit_functional_autocast, (self.mode,), {}
|
|
)
|
|
|
|
def enter(self, tx):
|
|
self.mode = tx.output.graph.create_node(
|
|
"call_function", enter_functional_autocast, (*self.target_values,), {}
|
|
)
|
|
|
|
def _func_name(self):
|
|
return "torch.amp.autocast_mode.autocast"
|
|
|
|
def fn_name(self):
|
|
return "torch.amp.autocast_mode.autocast"
|
|
|
|
|
|
def enter_functional_autocast(*vals):
|
|
mode = torch.amp.autocast(*vals)
|
|
mode.__enter__()
|
|
return mode
|
|
|
|
|
|
def exit_functional_autocast(mode):
|
|
mode.__exit__(None, None, None)
|
|
|
|
|
|
class ProfilerContextWrapperVariable(ContextWrappingVariable):
|
|
def __init__(self, target_values=None, **kwargs):
|
|
super(ProfilerContextWrapperVariable, self).__init__(
|
|
target_values=target_values, **kwargs
|
|
)
|
|
|
|
def enter(self, tx):
|
|
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
|
|
|
|
def exit(self, tx, *args):
|
|
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
|
|
|
|
def fn_name(self):
|
|
return "autograd.profiler.profile"
|
|
|
|
|
|
class WithExitFunctionVariable(VariableTracker):
|
|
def __init__(self, ctx: VariableTracker, target, **kwargs):
|
|
super(WithExitFunctionVariable, self).__init__(**kwargs)
|
|
self.ctx = ctx
|
|
self.target = target
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
assert not kwargs
|
|
return self.ctx.exit(tx, *args)
|
|
|
|
def reconstruct(self, codegen):
|
|
# Note here we reconstruct the context manager rather than the
|
|
# exit function. The handler generated by BlockStackEntry
|
|
# will re-enter the context in the resume function.
|
|
output = AttrSource(
|
|
codegen.tx.import_source("torch"), self.ctx.fn_name()
|
|
).reconstruct(codegen)
|
|
|
|
if codegen.tx.output.partial_convert:
|
|
output.extend(
|
|
[
|
|
create_instruction("CALL_FUNCTION", 0),
|
|
create_instruction("SETUP_WITH", target=self.target),
|
|
create_instruction("POP_TOP"),
|
|
]
|
|
)
|
|
return output
|
|
|
|
|
|
class InspectSignatureVariable(VariableTracker):
|
|
"""represents inspect.signature(...)"""
|
|
|
|
@staticmethod
|
|
def create(callable, **kwargs):
|
|
if kwargs:
|
|
unimplemented(f"inspect.signature with {kwargs}")
|
|
return InspectSignatureVariable(callable)
|
|
|
|
def __init__(self, inspected, **kwargs):
|
|
super(InspectSignatureVariable, self).__init__(**kwargs)
|
|
self.inspected = inspected
|
|
|
|
|
|
class AutogradFunctionVariable(VariableTracker):
|
|
"""represents a torch.autograd.Function subclass"""
|
|
|
|
def __init__(self, fn_cls, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.fn_cls = fn_cls
|
|
|
|
def call_apply(self, tx, args, kwargs):
|
|
requires_grad = False
|
|
|
|
def visit(node):
|
|
nonlocal requires_grad
|
|
if isinstance(node, variables.TensorVariable):
|
|
if node.requires_grad is not False:
|
|
requires_grad = True
|
|
if isinstance(node, variables.NNModuleVariable):
|
|
if node.is_training(tx):
|
|
requires_grad = True
|
|
return node
|
|
|
|
VariableTracker.apply(visit, (args, kwargs))
|
|
|
|
if requires_grad and torch.is_grad_enabled():
|
|
# TODO(jansel): handle this in training mode
|
|
unimplemented("autograd.Function with requires_grad")
|
|
|
|
args = [BlackHoleVariable()] + list(args)
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
return variables.UserFunctionVariable(
|
|
self.fn_cls.forward, **options
|
|
).call_function(tx, args, kwargs)
|
|
|
|
def call_function(self, tx, args, kwargs):
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
return AutogradFunctionVariable(self.fn_cls, **options)
|
|
|
|
|
|
class BlackHoleVariable(VariableTracker):
|
|
"""A autograd.function context that just ignores everything (for forward extraction)"""
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
assert name in ("__setattr__", "save_for_backward"), name
|
|
return variables.ConstantVariable(
|
|
None, **VariableTracker.propagate(self, args, kwargs.values())
|
|
)
|
|
|
|
|
|
class LambdaVariable(VariableTracker):
|
|
def __init__(self, fn, **kwargs):
|
|
super(LambdaVariable, self).__init__(**kwargs)
|
|
self.fn = fn
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
return self.fn(*args, **kwargs).add_options(self)
|
|
|
|
|
|
class GetAttrVariable(VariableTracker):
|
|
def __init__(self, obj, name, **kwargs):
|
|
super(GetAttrVariable, self).__init__(**kwargs)
|
|
assert isinstance(obj, VariableTracker)
|
|
assert isinstance(name, str)
|
|
self.obj = obj
|
|
self.name = name
|
|
|
|
def __str__(self):
|
|
return f"{self.__class__.__name__}({self.obj}, {self.name})"
|
|
|
|
def as_proxy(self):
|
|
return getattr(self.obj.as_proxy(), self.name)
|
|
|
|
def const_getattr(self, tx, name):
|
|
if not isinstance(self.obj, variables.NNModuleVariable):
|
|
raise NotImplementedError()
|
|
step1 = tx.output.get_submodule(self.obj.module_key)
|
|
if self.name not in step1.__dict__:
|
|
raise NotImplementedError()
|
|
step2 = inspect.getattr_static(step1, self.name)
|
|
if name not in step2.__dict__:
|
|
raise NotImplementedError()
|
|
return inspect.getattr_static(step2, name)
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen(self.obj)
|
|
return codegen.create_load_attrs(self.name)
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
|
|
# This variable is True when it corresponds to user code such as
|
|
#
|
|
# super().__torch_function__(...)
|
|
#
|
|
# and the super().__torch_function__ attribute resolves
|
|
# to torch.Tensor.__torch_function__.
|
|
is_original_tensor_torch_function = (
|
|
self.name == "__torch_function__"
|
|
and isinstance(self.obj, SuperVariable)
|
|
# for now, only support one level of inheritance
|
|
and len(self.obj.objvar.value.__mro__) > 1
|
|
and self.obj.objvar.value.__mro__[1] == torch.Tensor
|
|
)
|
|
if is_original_tensor_torch_function:
|
|
# Instead of tracing inside torch.Tensor.__torch_function__,
|
|
# record the `call_function` or `call_method` call into the graph.
|
|
from . import TensorVariable, TorchVariable
|
|
|
|
original_torch_or_getattr_variable = args[0]
|
|
new_args = args[2].items
|
|
new_kwargs = args[3].items
|
|
options = VariableTracker.propagate(self, new_args, new_kwargs.values())
|
|
# Disable __torch_function__ here to prevent the clone of the
|
|
# example tensor from going into the override.
|
|
with torch._C.DisableTorchFunction():
|
|
if isinstance(args[0], TorchVariable):
|
|
return TensorVariable.create(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
original_torch_or_getattr_variable.value,
|
|
*proxy_args_kwargs(new_args, new_kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
elif isinstance(args[0], GetAttrVariable):
|
|
return TensorVariable.create(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_method",
|
|
original_torch_or_getattr_variable.name,
|
|
*proxy_args_kwargs(new_args, new_kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
else:
|
|
unimplemented(
|
|
f"GetAttrVariable.call_function original __torch_function__ {args}"
|
|
)
|
|
|
|
if isinstance(self.obj, AutogradFunctionVariable) and self.name == "apply":
|
|
return self.obj.call_apply(tx, args, kwargs).add_options(self)
|
|
return self.obj.call_method(tx, self.name, args, kwargs).add_options(self)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if (
|
|
name == "__len__"
|
|
and isinstance(self.obj, InspectSignatureVariable)
|
|
and self.name == "parameters"
|
|
):
|
|
return variables.ConstantVariable(
|
|
self.obj.inspected.num_parameters(),
|
|
**VariableTracker.propagate(self, self.obj, self.obj.inspected),
|
|
)
|
|
return super(GetAttrVariable, self).call_method(tx, name, args, kwargs)
|
|
|
|
|
|
class PythonModuleVariable(VariableTracker):
|
|
def __init__(self, value: types.ModuleType, **kwargs):
|
|
super(PythonModuleVariable, self).__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def python_type(self):
|
|
return types.ModuleType
|
|
|
|
|
|
class SkipFilesVariable(VariableTracker):
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
if inspect.getattr_static(self.value, "_torchdynamo_disable", False):
|
|
unimplemented(
|
|
f"call {config.dynamo_import}.disable() wrapped function {self.value}"
|
|
)
|
|
else:
|
|
try:
|
|
path = inspect.getfile(self.value)
|
|
except TypeError:
|
|
path = f"Builtin {self.value.__name__}"
|
|
unimplemented("call_function in skip_files " + path)
|
|
|
|
|
|
class TypingVariable(VariableTracker):
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if name == "__getitem__" and len(args) == 1:
|
|
return variables.ConstantVariable(
|
|
self.value[args[0].as_python_constant()],
|
|
**VariableTracker.propagate(self, args),
|
|
)
|
|
unimplemented("typing")
|
|
|
|
|
|
class NumpyVariable(VariableTracker):
|
|
"""
|
|
Wrapper around `numpy.*` for better error messages.
|
|
"""
|
|
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
unimplemented("numpy")
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
unimplemented("numpy")
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|