Commit Graph

8 Commits

Author SHA1 Message Date
SsnL
df9d8f9032 Fix no auto batching bugs: cannot bulk load; not work with namedtuple (#26065)
Summary:
see title
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26065

Differential Revision: D17392851

Pulled By: soumith

fbshipit-source-id: 468cd41c8e03d689ff2e0261d948e28daad6bfaf
2019-09-16 07:22:31 -07:00
Tongzhou Wang
058beae411 Add IterableDataset (#19228)
Summary:
This is a modified version of https://github.com/pytorch/pytorch/pull/14705 since commit structure for that PR is quite messy.

1. Add `IterableDataset`.
3. So we have 2 data loader mods: `Iterable` and `Map`.

    1. `Iterable` if the `dataset` is an instance of `IterableDataset`
    2. `Map` o.w.

3. Add better support for non-batch loading (i.e., `batch_size=None` and `batch_sampler=None`). This is useful in doing things like bulk loading.
3. Refactor `DataLoaderIter` into two classes, `_SingleProcessDataLoaderIter` and `_MultiProcessingDataLoaderIter`. Rename some methods to be more generic, e.g., `get_batch` -> `get_data`.
4. Add `torch.utils.data.get_worker_info` which returns worker information in a worker proc (e.g., worker id, dataset obj copy, etc.) and can be used in `IterableDataset.__iter__` and `worker_init_fn` to do per-worker configuration.
5. Add `ChainDataset`, which is the analog of `ConcatDataset` for `IterableDataset`.
7. Import torch.utils.data in `torch/__init__.py`
9. data loader examples and documentations
10. Use `get_worker_info` to detect whether we are in a worker process in `default_collate`

Closes https://github.com/pytorch/pytorch/issues/17909, https://github.com/pytorch/pytorch/issues/18096, https://github.com/pytorch/pytorch/issues/19946, and some of https://github.com/pytorch/pytorch/issues/13023
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19228

Reviewed By: bddppq

Differential Revision: D15058152

fbshipit-source-id: 9e081a901a071d7e4502b88054a34b450ab5ddde
2019-06-20 20:12:44 -07:00
Eskil Jörgensen
8042edcdb1 Make pin_memory and default_collate preserve namedtuples (#16440)
Summary:
Open issue: https://github.com/pytorch/pytorch/issues/3281
Corresponding PR (conflict): https://github.com/pytorch/pytorch/pull/4577

Another open issue: https://github.com/pytorch/pytorch/issues/14613
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16440

Differential Revision: D14020901

Pulled By: ezyang

fbshipit-source-id: 4abe817fc43c281a510715d311bad544511995d3
2019-02-11 08:47:33 -08:00
Christoph
2a45050fdc Concatenate directly into shared memory when constructing batches for numpy (#14534)
Summary:
Since #1323 tensors are shared with shared memory, but this feature is not active for numpy.
This PR fix this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14534

Differential Revision: D13561649

Pulled By: soumith

fbshipit-source-id: b6bc9e99fb91e8b675c2ef131fba9fa11c1647c0
2018-12-29 17:51:02 -08:00
SsnL
fb22f76eb6 default_collate should collate bool list to byte tensors (#14669)
Summary:
Based on #15331 . Review only the last commit.

Fixes https://github.com/pytorch/pytorch/issues/14507.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14669

Reviewed By: ezyang

Differential Revision: D13528725

Pulled By: soumith

fbshipit-source-id: f12f1ac1c4ff2a3ddd6877c0c096a5da3a1ffa3c
2018-12-28 12:26:46 -08:00
SsnL
9217bde807 Refactor dataloader.py (#15331)
Summary:
Same as #14668, and was approved there.

ailzhang , please apply this patch to Horizon's `data_streamer.py`: https://gist.github.com/SsnL/020fdb3d6b7016d81b6ba1d04cc41459 Thank you!

Below is the original description at #14668:

As I am working on tasks in https://github.com/pytorch/pytorch/issues/13023, I realized how unreadable the code is because all functions to be run in multiprocessing must be at top global level. Adding more functionalities to `dataloader.py` will only make things worse.

So in this PR, I refactor `dataloader.py` and move much of it into `data._utils`. E.g., the `_worker_loop` and related methods are now in `data._utils.worker`, signal handling code in `data._utils.signal_handling`, collating code in `data._utils.collate`, etc. This split, IMHO, makes code much clearer. I will base my future changes to DataLoader on top of this.

No functionality is changed, except that  I added `torch._six.queue`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15331

Reviewed By: yf225

Differential Revision: D13503120

Pulled By: ailzhang

fbshipit-source-id: 94df16b4d80ad1102c437cde0d5a2e62cffe1f8e
2018-12-19 12:36:03 -08:00
Ailing Zhang
38eb1beff5 Revert D13289919: [pytorch][PR] [DataLoader] Refactor dataloader.py
Differential Revision:
D13289919

Original commit changeset: d701bc7bb48f

fbshipit-source-id: c350c491fefa98a0a7c0cf22cb832e78aeb15c3d
2018-12-04 20:25:16 -08:00
SsnL
16558a1e9d Refactor dataloader.py (#14668)
Summary:
As I am working on tasks in https://github.com/pytorch/pytorch/issues/13023, I realized how unreadable the code is because all functions to be run in multiprocessing must be at top global level. Adding more functionalities to `dataloader.py` will only make things worse.

So in this PR, I refactor `dataloader.py` and move much of it into `data._utils`. E.g., the `_worker_loop` and related methods are now in `data._utils.worker`, signal handling code in `data._utils.signal_handling`, collating code in `data._utils.collate`, etc. This split, IMHO, makes code much clearer. I will base my future changes to DataLoader on top of this.

No functionality is changed, except that  I added `torch._six.queue`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14668

Reviewed By: soumith

Differential Revision: D13289919

Pulled By: ailzhang

fbshipit-source-id: d701bc7bb48f5dd7b163b5be941a9d27eb277a4c
2018-12-04 09:53:41 -08:00