pytorch/torch/utils/data/_utils/collate.py
SsnL 9217bde807 Refactor dataloader.py (#15331)
Summary:
Same as #14668, and was approved there.

ailzhang , please apply this patch to Horizon's `data_streamer.py`: https://gist.github.com/SsnL/020fdb3d6b7016d81b6ba1d04cc41459 Thank you!

Below is the original description at #14668:

As I am working on tasks in https://github.com/pytorch/pytorch/issues/13023, I realized how unreadable the code is because all functions to be run in multiprocessing must be at top global level. Adding more functionalities to `dataloader.py` will only make things worse.

So in this PR, I refactor `dataloader.py` and move much of it into `data._utils`. E.g., the `_worker_loop` and related methods are now in `data._utils.worker`, signal handling code in `data._utils.signal_handling`, collating code in `data._utils.collate`, etc. This split, IMHO, makes code much clearer. I will base my future changes to DataLoader on top of this.

No functionality is changed, except that  I added `torch._six.queue`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15331

Reviewed By: yf225

Differential Revision: D13503120

Pulled By: ailzhang

fbshipit-source-id: 94df16b4d80ad1102c437cde0d5a2e62cffe1f8e
2018-12-19 12:36:03 -08:00

69 lines
2.6 KiB
Python

r""""Contains definitions of the methods used by the _DataLoaderIter workers to
collate samples fetched from dataset into Tensor(s).
These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""
import torch
import re
from torch._six import container_abcs, string_classes, int_classes
_use_shared_memory = False
r"""Whether to use shared memory in default_collate"""
np_str_obj_array_pattern = re.compile(r'[SaUO]')
error_msg_fmt = "batch must contain tensors, numbers, dicts or lists; found {}"
numpy_type_map = {
'float64': torch.DoubleTensor,
'float32': torch.FloatTensor,
'float16': torch.HalfTensor,
'int64': torch.LongTensor,
'int32': torch.IntTensor,
'int16': torch.ShortTensor,
'int8': torch.CharTensor,
'uint8': torch.ByteTensor,
}
def default_collate(batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(error_msg_fmt.format(elem.dtype))
return torch.stack([torch.from_numpy(b) for b in batch], 0)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int_classes):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], container_abcs.Mapping):
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], container_abcs.Sequence):
transposed = zip(*batch)
return [default_collate(samples) for samples in transposed]
raise TypeError((error_msg_fmt.format(type(batch[0]))))