Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34160
I constructed the patch by deleting OperatorOptions and then rerouting
all queries for AliasAnalysisKind to FunctionSchema. Some of the
behavior is kind of bogus: we really shouldn't be mutating FunctionSchema
after the fact, but that won't get fixed until we actually switch to
true schema merging.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20282846
Pulled By: ezyang
fbshipit-source-id: ba7bca6e8adc3365789639b88e54c4e881b1692e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34122
Earlier work added support for async rpc cases when RecordFunction's
end callbacks might be called in a different thread; in addition some
extra care was needed to handle pointer to parent function;
This PR makes RecordFunction aware of potentially multiple threads in
use, as well as removes unused parent() call and restricts current()
RecordFunction to scope-based record functions (RECORD_FUNCTION macro)
Test Plan: unit tests
Differential Revision: D20297709
Pulled By: ilia-cher
fbshipit-source-id: 46a59e1b2eea0bbd8a59630385e193b38d30f9d1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33834
This changes how we report Tracebacks to make them more clear when
there are both serialized and non-serialized ranges. It now looks like:
```
Traceback (most recent call last):
File "foo.py", line 25, in <module>
s2(a, b)
File "/scratch/zdevito/pytorch/torch/nn/modules/module.py", line 550, in __call__
result = self.forward(*input, **kwargs)
RuntimeError: The following operation failed in the TorchScript interpreter.
Traceback of TorchScript, serialized code (most recent call last):
File "code/__torch__.py", line 7, in forward
x: Tensor,
y: Tensor) -> Tensor:
return (self).bar(x, y, )
~~~~~~~~~ <--- HERE
def bar(self: __torch__.Moo,
x: Tensor,
File "code/__torch__.py", line 11, in bar
x: Tensor,
y: Tensor) -> Tensor:
_0 = (self).baz(x, y, )
~~~~~~~~~ <--- HERE
_1 = torch.ones([3], dtype=None, layout=None, device=None, pin_memory=None)
return torch.add(_0, _1, alpha=1)
File "code/__torch__.py", line 17, in baz
x: Tensor,
y: Tensor) -> Tensor:
return torch.add(x, y, alpha=1)
~~~~~~~~~ <--- HERE
Traceback of TorchScript, original code (most recent call last):
File "foo.py", line 11, in forward
def forward(self, x, y):
return self.bar(x, y)
~~~~~~~~ <--- HERE
File "foo.py", line 9, in bar
def bar(self, x, y):
return self.baz(x, y) + torch.ones(3)
~~~~~~~~ <--- HERE
File "foo.py", line 7, in baz
def baz(self, x, y):
return x + y
~~~~~ <--- HERE
RuntimeError: The size of tensor a (4) must match the size of tensor b (5) at non-singleton dimension 1
```
It follows Python convension of having the most important information last
and reading from the bottom up.
Changes:
* Moved the error message to the end, to copy Python
* Report original traceback separate from serialized traceback
* Make sure root functions have names in the interpreter trace.
Test Plan: Imported from OSS
Differential Revision: D20126136
Pulled By: zdevito
fbshipit-source-id: fd01f9985e5d74e04c4d064c02e8bc320f4fac13
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32251
Previously wildcard sets were associated by TypeKind, meaning all Lists were in one alias set, all Classes were in one alias set, etc. We can improve analysis by bucketing wildcard sets by TypePtr instead. Any two mutable types which can unify should be in the same wildcard set bucket.
This also allows us do much simpler `mayContainAlias` analysis, and also improves `analyzeConservative` analysis because now we can recurse through all contained memory locations and mark writes, instead of just recursing only level deep in contained elements.
Test Plan: Imported from OSS
Differential Revision: D19563263
Pulled By: eellison
fbshipit-source-id: 371a37d1a8596abc6c53f41c09840b6c140ea362
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30734
What are specialized lists?
The IValues that hold List[int], List[Tensor], and List[AnythingElse] are different C++ types.
e.g. List[int] has a std::vector<int> while List[AnythingElse] holds a std::vector<IValue>.
Why do we have specialized lists?
When we first created the JIT we needed to bind the ATen C++ API which has std::vector<int>,
std::vector<Tensor> as inputs. The easiest way to match this API was to make our IValues contain
these same types. Conversion was just unwrapping the IValue, very easy and cheap.
What is the problem with specialized lists?
We end up with significant special cases through the compiler. Other types like Dict are not
specialized. So in the Pickler, for instance, there is a single piece of logic to handle
their serialization. For Lists, we end up with multiple cases. Furthermore, it doesn't
match Python, leading to problems along translation boundaries. Our pickle serialization
is slightly different than python, so it is harder to load objects from our IValue serialization
as Python values.
They also make it harder to provide an easy-to-use user API. We'd like to match pybind11 for C++
bindings to TorchScript. This would entail having a single torch::List class (untemplated)
that can be used to construct inputs. This is made much harder if the underlying ivalue needs
to be different depending on the type inside the list. The ideal case would be to have a constructor like
```
template<typename T>
List(std::vector<T> foo);
```
It would then set up the type tags correctly based on type T, without the need for passing tags.
Do specialized lists improve perf?
Not in a way we have been able to measure. Our major concern initially was having to translate
a std::vector<IValue> to std::vector<int> to call ATen functions. This was especially a concern
for aten::_convolution which takes a number of mostly-constant lists of integers. However,
when we measure the effect of actually having to do this conversion for an aten::_convolution,
it does not take measurable time (benchmark results below).
This is true even if you use a trivial convolution (e.g. 1x1x1), and comment out the actual convolution code.
What are the issues removing them?
This PR removes list specialization but keeps the serialization format, and IValue APIs almost exactly
the same. The only visible change is that toTensorListRef and family have turned into toTensorVector
because they now return by value a copy of the list as a vector.
Further PRs can then clean up the complexity issues that arose from speclization. This will likely
involve removing the isTensorList/isIntList functions, and refactoring the code that used them to
work generically. At some point we will also change serialization to no longer write specialized
lists in the pickle binary. This is forward incompatible, so will go in its own PR.
Benchmark:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
class MnistNet(nn.Module):
def __init__(self):
super(MnistNet, self).__init__()
self.conv1 = nn.Conv2d(1, 1, kernel_size=1)
self.conv2 = nn.Conv2d(1, 1, kernel_size=1)
def forward(self, x):
for i in range(10):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
return x
model = MnistNet()
x = torch.rand(1, 1, 1, 1)
r = torch.jit.trace(model, x )
r(x)
r(x)
r(x)
r(x)
print(torch.jit.last_executed_optimized_graph())
while True:
b = time.time()
for i in range(100):
r(x)
e = time.time()
print(e - b)
```
Results (no observable difference):
```
Before (actual conv)
0.13251137733459473
0.13260436058044434
0.13276338577270508
0.1327497959136963
0.13250041007995605
0.13270330429077148
0.13290190696716309
0.13265132904052734
0.13274288177490234
0.1326758861541748
0.13253355026245117
0.13254785537719727
0.13260746002197266
0.13285017013549805
0.13264012336730957
0.132490873336792
0.13280034065246582
0.13243484497070312
0.1325232982635498
0.1326127052307129
0.13264131546020508
0.13274383544921875
0.13298296928405762
0.1326909065246582
-------------------
After (actual conv)
0.13127517700195312
0.13150334358215332
0.13092470169067383
0.13102364540100098
0.13134360313415527
0.13155555725097656
0.13314104080200195
0.13151955604553223
0.13160037994384766
0.1315293312072754
0.13137340545654297
0.13148093223571777
0.131455659866333
0.1327371597290039
0.13134026527404785
0.13152337074279785
0.13151192665100098
0.13165974617004395
0.13403725624084473
0.13251852989196777
0.13135504722595215
0.1315624713897705
0.1317615509033203
0.1314380168914795
0.13157200813293457
--------------------
The following replace the convolution operator with a no-op, to show
that even if the conv op was made faster, then we still would not see
a difference:
Before (fake conv)
0.0069539546966552734
0.0069522857666015625
0.007120847702026367
0.007344722747802734
0.007689952850341797
0.007932662963867188
0.00761723518371582
0.007501363754272461
0.007532835006713867
0.007141828536987305
0.007174253463745117
0.007114410400390625
0.007071495056152344
------------------
After (fake conv)
0.007458209991455078
0.007337093353271484
0.007268190383911133
0.007313251495361328
0.007306575775146484
0.007468700408935547
0.0073091983795166016
0.007308483123779297
0.007538318634033203
0.007356882095336914
0.007464170455932617
0.007372140884399414
```
Test Plan: Imported from OSS
Differential Revision: D18814702
Pulled By: zdevito
fbshipit-source-id: 0371c73b63068fdc12f24b801371ea90f23531a6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30683
Assume that a node can work with autograd only if it is not a fusion
group and in prim or aten namespaces.
Test Plan: CI
Reviewed By: lly-zero-one
Differential Revision: D18795171
Pulled By: ilia-cher
fbshipit-source-id: 301090557e330b58be70e956784f7f0dc343c684
Summary:
This PR updates `torch::pickle_save` to use the new zipfile format introduced in #29232 and adds `torch::pickle_load` which can decode the zipfile format. Now that `torch.save/load` use this format as well (if the `_use_new_zipfile_serialization` flag is `True`), raw values saved in Python can be loaded in C++ and vice versa.
Fixes#20356
](https://our.intern.facebook.com/intern/diff/18607087/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30108
Pulled By: driazati
Differential Revision: D18607087
fbshipit-source-id: 067cdd5b1cf9c30ddc7e2e5021a8cceee62d8a14
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27921
InlinedCallstack serves a similar purpose to Scope, but instead of storing
string names of the functions it stores pointer to Function objects
themselves. Currently, scopes are used in tracing and callstacks are
used in scripting - hopefully I would be able to merge them in future.
gh-metadata: pytorch pytorch 27921 gh/ZolotukhinM/139/head
Differential Revision: D17914132
Test Plan: Imported from OSS
Pulled By: ZolotukhinM
fbshipit-source-id: b1daa6700199ee1a97a7f49a6fced9ac0dc13051
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29213
A trivial use of make_variable is one where requires_grad=False. This
transformation is not technically semantics preserving, as make_variable
will create a shallow copy of the tensor in question; however, I
am guessing that we have the invariant that we don't actually make
use of this shallow copy in a nontrivial way.
There were some cases where the surrounding code expected a Variable proper
to be returned; I retained those sites.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353503
Pulled By: ezyang
fbshipit-source-id: 57fe34d82e009c0cc852266fb0b79d6d9c62bb03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28828
This updates torch::script::Module to more closely match the behavior
of nn.Module. In particular, it implements the (optionally recurisive)
iterators that retrieve submodules, parameters, and buffers and makes
their names match the python versions.
This also removes the individual accessors for Parameter, Module, Buffer, etc.
and replaces them with a single `attr` function which is equivalent to
writing `a.foo` in Python (`setattr` emulates `a.foo = v`).
As we build out the user-facing API for TorchScript values this will end
up matching how an attribute is accessed on general objects.
This PR preservers the python bindings for script::Module by emulating the
old API at the binding level. A followup will clean up the usage to more
directly match the C++ API.
Test Plan: Imported from OSS
Differential Revision: D18197611
Pulled By: zdevito
fbshipit-source-id: 7ee4dcbb258605d1c988314b05d938423f1ccee5
Summary:
This takes a lot of pressure off of the C++ typechecker as well as generating much more
efficient and smaller code. In my not-super-rigorous testing, compile time for
register_prim_ops.cpp went from 68s to 35s, and the size of libtorch went from 72MB to 70MB.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26560
Differential Revision: D17507305
fbshipit-source-id: 8bbd2c08304739432efda96da71f0fa80eb7668b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25361
Previously we had a different None object for each type T so that
unwrap optional could still recover the type T from it. After a few
months of having this conversion behavior, it has become clear that
only the unwrap optional operators cause this problem. Furthermore, it
is beneficial to have NoneType <: Optional[T] because this is how IValues
work (in particular the None IValue is not tagged). This patch makes the
necessary changes to do this. In particular it special cases unwrap optional
in export so that it annotates the None to make sure we can recover the type.
This also changes how matching and evaluating type values work so that we
can consider None matchable to type Optional[T], eventhough we cannot
derive T from that match.
Test Plan: Imported from OSS
Differential Revision: D17103072
Pulled By: zdevito
fbshipit-source-id: 37678ed3e5ce54f2eb3ee4dff2734a39f0bee028
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24284
This PR finishes the unification of all Tensor types into a single object.
ProfiledTensorType is renamed to TensorType and the old TensorType is
deleted.
Notes:
* Fixes bug in merge for VaryingShape by changing its representation to an
optional list of optional ints.
* Removes ProfiledTensorType::create(type) invocations that can now
simply be expect calls on tensor type.
Test Plan: Imported from OSS
Differential Revision: D16794034
Pulled By: zdevito
fbshipit-source-id: 10362398d0bb166d0d385d74801e95d9b87d9dfc
Summary:
This PR removes SymbolicVariable from all tests as well as the specialize_autogradzero and canonicalize_ops passes. These passes used SymbolicVariable in a relatively simple way compared to its few remaining uses.
Removing SymbolicVariable means graphs must be constructed by other methods. IRParser was preferred for tests, but tests requiring pointers to graph internals or differentiation use direct construction instead. See https://github.com/pytorch/pytorch/issues/23989, which was discovered during this process, for why IRParser cannot be used when differentiation is required. Direct construction was also used in the updated passes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24007
Test Plan: Only refactors existing tests and preserves current checks; no additional testing needed.
Differential Revision: D16906045
Pulled By: mruberry
fbshipit-source-id: b67df4611562cd7618f969890e2b6840750c7266
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24801
This is to fix the ODR-violations in fbcode static builds, which have been broken for several months.
This PR is unfortunately quite large, but the changes are only mechanical:
1. Tests defined in header files -> tests defined in cpp files
2. Remove the `torch::jit::testing` namespace -> `torch::jit`.
3. Single `test.h` file that aggregates all tests.
4. Separate out files for gtest and python versions of the tests instead of using a build flag
5. Add a readme for how to add a new test, and explaining a bit about why the cpp tests are the way they are.
Test Plan: Imported from OSS
Differential Revision: D16878605
Pulled By: suo
fbshipit-source-id: 27b5c077dadd990a5f74e25d01731f9c1f491603